[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Rigorous Engineering of Collective Adaptive Systems Introduction to the 5\(^{\textrm{th}}\) Track Edition

  • Conference paper
  • First Online:
Leveraging Applications of Formal Methods, Verification and Validation. Rigorous Engineering of Collective Adaptive Systems (ISoLA 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15220))

Included in the following conference series:

  • 91 Accesses

Abstract

A collective adaptive system is made up of cooperating entities that can adjust in real time to evolving, open environments and shifting requirements. To ensure such a system meets its intended goals, rigorous engineering must employ suitable methods and tools. This introduction offers a short overview of the 5th edition of the track “Rigorous Engineering of Collective Adaptive Systems” and briefly presents the 20 scientific contributions, organised into seven thematic sections. Large Ensembles and Collective Dynamics, Knowledge, Consciousness and Emergence, Automated Reasoning for Better Interaction, Modelling and Engineering Collective Adaptive Systems, Analysing Collective Adaptive Systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 49.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 59.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abd Alrahman, Y., Azzopardi, S., Stefano, L.D., Piterman, N.: Language support for verifying reconfigurable interacting systems. Int. J. Softw. Tools Technol. Transf. 25(5), 765–784 (2023)

    Article  Google Scholar 

  2. Abd Alrahman, Y., Azzopardi, S., Stefano, L.D., Piterman, N.: Attributed point-to-point communication in R-Check. In: Margaria, T., Steffen, B. (eds.) ISoLA 2024. LNCS, vol. 15220, pp. 333–350. Springer, Cham (2024)

    Google Scholar 

  3. Altmann, P., et al.: Emergence in multi-agent systems - a safety perspective. In: Margaria, T., Steffen, B. (eds.) ISoLA 2024. LNCS, vol. 15220, pp. 104–120. Springer, Cham (2024)

    Google Scholar 

  4. Audrito, G., Damiani, F., Torta, G.: Towards real-time aggregate computing. In: Margaria, T., Steffen, B. (eds.) ISoLA 2024. LNCS, vol. 15220, pp. 49–68. Springer, Cham (2024)

    Google Scholar 

  5. Aßmann, U., Gutsche, C.: RailCabs and Birds in Julia - context-role ensemble engineering in practice. In: Margaria, T., Steffen, B. (eds.) ISoLA 2024. LNCS, vol. 15220, pp. 191–207. Springer, Cham (2024)

    Google Scholar 

  6. Bae, K., Ölveczky, P.C., Meseguer, J.: Definition, semantics, and analysis of multirate synchronous AADL. In: Jones, C.B., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 94–109. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-319-06410-9_7

    Chapter  Google Scholar 

  7. Baum, L.E., Petrie, T., Soules, G., Weiss, N.: A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Ann. Math. Statist. 41(1), 164–171 (1970)

    Article  MathSciNet  Google Scholar 

  8. Beal, J., Pianini, D., Viroli, M.: Aggregate programming for the internet of things. Computer 48(9), 22–30 (2015)

    Article  Google Scholar 

  9. Belzner, L., Gabor, T., Wirsing, M.: Large language model assisted software engineering: prospects, challenges, and a case study. In: Steffen, B. (ed.) AISoLA 2023. LNCS, vol. 14380, pp. 355–374. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-46002-9_23

    Chapter  Google Scholar 

  10. Bernadeschi, C., Lettieri, G., Rossi, F.: Statistical model checking of cooperative autonomous driving systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2024. LNCS, vol. 15220, pp. 316–332. Springer, Cham (2024)

    Google Scholar 

  11. Bortolussi, L., Gallo, G.M., Kretínský, J., Nenzi, L.: Learning model checking and the kernel trick for signal temporal logic on stochastic processes. In: Fisman, D., Rosu, G. (eds.) TACAS 2022. LNCS, vol. 13243, pp. 281–300. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99524-9_15

    Chapter  Google Scholar 

  12. Bourr, K., Bettini, L., Tiezzi, F.: Model-driven development of multi-robot systems: from BPMN models to X-KLAIM Code0. In: Margaria, T., Steffen, B. (eds.) ISoLA 2024. LNCS, vol. 15220, pp. 224–242. Springer, Cham (2024)

    Google Scholar 

  13. Bureš, T., et al.: A life cycle for the development of autonomic systems: the e-mobility showcase. In: SASO Workshops, pp. 71–76 (2013)

    Google Scholar 

  14. Bureš, T., Gerostathopoulos, I., Hnětynka, P., Pacovsky, J.: Forming ensembles at runtime: a machine learning approach. In: [50], pp. 440–456 (2020)

    Google Scholar 

  15. Bureš, T., Gerostathopoulos, I., Hnětynka, P., Keznikl, J., Kit, M., Plášil, F.: DEECO: an ensemble-based component system. In: Kruchten, P., Giannakopoulou, D., Tivoli, M. (eds.) CBSE 2013, Proceedings of the 16th ACM SIGSOFT Symposium on Component Based Software Engineering, part of Comparch 2013, Vancouver, BC, Canada, 17–21 June 2013, pp. 81–90. ACM (2013)

    Google Scholar 

  16. Bureš, T., et al.: Attuning adaptation rules via a rule-specific neural network. In: [51], pp. 215–230 (2022)

    Google Scholar 

  17. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Symbolic computation of differential equivalences. In: Bodík, R., Majumdar, R. (eds.) Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA, 20–22 January 2016, pp. 137–150. ACM (2016)

    Google Scholar 

  18. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: ERODE: a tool for the evaluation and reduction of ordinary differential equations. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 310–328. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54580-5_19

    Chapter  Google Scholar 

  19. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Maximal aggregation of polynomial dynamical systems. Proc. Natl. Acad. Sci. U.S.A. 114(38), 10029–10034 (2017)

    Article  Google Scholar 

  20. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Syntactic Markovian bisimulation for chemical reaction networks. In: Aceto, L., Bacci, G., Bacci, G., Ingólfsdóttir, A., Legay, A., Mardare, R. (eds.) Models, Algorithms, Logics and Tools. LNCS, vol. 10460, pp. 466–483. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63121-9_23

    Chapter  Google Scholar 

  21. Chen, Y., Sanders, J.: The evolving conscious agent, I. In: Margaria, T., Steffen, B. (eds.) ISoLA 2024. LNCS, vol. 15220, pp. 88–103. Springer, Cham (2024)

    Google Scholar 

  22. Chen, Y., Sanders, J.W.: A modal approach to consciousness of agents. In: [51], pp. 127–141 (2022)

    Google Scholar 

  23. Constable, R.L., et al.: Implementing Mathematics with the Nuprl Proof Development System. Prentice Hall, Hoboken (1986)

    Google Scholar 

  24. David, A., Larsen, K.G., Legay, A., Mikucionis, M., Poulsen, D.B.: Uppaal SMC tutorial. Int. J. Softw. Tools Technol. Transf. 17(4), 397–415 (2015)

    Article  Google Scholar 

  25. De Nicola, R., Jähnichen, S., Wirsing, M.: Rigorous engineering of collective adaptive systems: special section. Int. J. Softw. Tools Technol. Transf. 22(4), 389–397 (2020)

    Article  Google Scholar 

  26. De Nicola, R., Jähnichen, S., Wirsing, M.: Rigorous engineering of collective adaptive systems – introduction to the 2nd track edition. In: [49], pp. 3–12 (2018)

    Google Scholar 

  27. Deneubourg, J., Aron, S., Goss, S., Pasteels, J.: The self-organizing exploratory pattern of the Argentine ant. J. Insect Behav. 3, 159–168 (1990)

    Article  Google Scholar 

  28. Fettke, P., Reisig, W.: Discrete models of continuous behavior of collective adaptive systems. In: [51], pp. 65 –81 (2022)

    Google Scholar 

  29. Fettke, P., Reisig, W.: Once and for all: how to compose modules - the composition calculus. In: Margaria, T., Steffen, B. (eds.) ISoLA 2024. LNCS, vol. 15220, pp. 173–190. Springer, Cham (2024)

    Google Scholar 

  30. Gast, N., Bortolussi, L., Tribastone, M.: Size expansions of mean field approximation: transient and steady-state analysis. Perform. Eval. 129, 60–80 (2019)

    Article  Google Scholar 

  31. Giudice, N.D., Loreti, M., Quadrini, M., Rehman, A.: Monitoring local and global properties of collective adaptive systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2024. LNCS, vol. 15220, pp. 281–296. Springer, Cham (2024)

    Google Scholar 

  32. Harrison, J.: The HOL Light system reference (2023). https://github.com/jrh13/hol-light/. Accessed 13 July 2024

  33. Hennicker, R., Knapp, A., Wirsing, M.: Epistemic ensembles. In: [51], pp. 110–126 (2022)

    Google Scholar 

  34. Hennicker, R., Knapp, A., Wirsing, M.: Epistemic ensembles in semantic and symbolic environments. In: Margaria, T., Steffen, B. (eds.) ISoLA 2024. LNCS, vol. 15220, pp. 69–87. Springer, Cham (2024)

    Google Scholar 

  35. Hennicker, R., Knapp, A., Wirsing, M.: Symbolic realisation of epistemic processes. In: Bjørner, N.S., Heule, M., Voronkov, A. (eds.) LPAR 2024: Proceedings of 25th Conference on Logic for Programming, Artificial Intelligence and Reasoning, Port Louis, Mauritius, 26–31 May 2024. EPiC Series in Computing, vol. 100, pp. 390–407. EasyChair (2024)

    Google Scholar 

  36. Hölzl, M.M., Rauschmayer, A., Wirsing, M.: Engineering of software-intensive systems: state of the art and research challenges. In: [62], pp. 1–44. Springer, Heidelberg (2008)

    Google Scholar 

  37. Jähnichen, S., Wirsing, M.: Rigorous engineering of collective adaptive systems – track introduction. In: [48], pp. 535–538 (2016)

    Google Scholar 

  38. Kernbach, S., Schmickl, T., Timmis, J.: Collective adaptive systems: challenges beyond evolvability. CoRR abs/1108.5643 (2011)

    Google Scholar 

  39. Klein, J., d’Onofrio, A., Petrov, T.: Exploring robustness in reaching consensus in robot swarms with disruptive individuals. In: Margaria, T., Steffen, B. (eds.) ISoLA 2024. LNCS, vol. 15220, pp. 33–48. Springer, Cham (2024)

    Google Scholar 

  40. Kosak, O.: Mission programming for flying ensembles: combining planning with self-organization. Ph.D. thesis, University of Augsburg, Germany (2021)

    Google Scholar 

  41. Kosak, O., Kastenmüller, P., Wanninger, C., Reif, W.: An approach for extended swarm formation flight with drones: protease-X 2.0. In: Margaria, T., Steffen, B. (eds.) ISoLA 2024. LNCS, vol. 15220, pp. 263–280. Springer, Cham (2024)

    Google Scholar 

  42. Larsen, K., Toller, D., Tschaikowski, M., Tribastone, M., Vandin, A.: Optimality-preserving reduction of chemical reaction networks. In: Margaria, T., Steffen, B. (eds.) ISoLA 2024. LNCS, vol. 15220, pp. 13–32. Springer, Cham (2024)

    Google Scholar 

  43. Lee, J., Bae, K., Ölveczky, P.: Rigorous model engineering of multirate CPSs in MR-HybridSynchAADL. In: Margaria, T., Steffen, B. (eds.) ISoLA 2024. LNCS, vol. 15220, pp. 243–262. Springer, Cham (2024)

    Google Scholar 

  44. Lee, J., Kim, S., Bae, K., Ölveczky, P.C.: An extension of HybridSynchAADL and its application to collaborating autonomous UAVs. In: [51], pp. 47–64 (2022)

    Google Scholar 

  45. Maggesi, M., Perini Brogi, C.: Rigorous analysis of idealised pathfinding ants in higher-order logic. In: Margaria, T., Steffen, B. (eds.) ISoLA 2024. LNCS, vol. 15220, pp. 297–315. Springer, Cham (2024)

    Google Scholar 

  46. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp. 152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-3_12

    Chapter  Google Scholar 

  47. Margaria, T., Steffen, B. (eds.): ISoLA 2014, Part I. LNCS, vol. 8802. Springer, Cham (2014). https://doi.org/10.1007/978-3-662-45234-9

    Book  Google Scholar 

  48. Margaria, T., Steffen, B. (eds.): ISoLA 2016, Part I. LNCS, vol. 9952. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47166-2

    Book  Google Scholar 

  49. Margaria, T., Steffen, B. (eds.): ISoLA 2018, Part III. LNCS, vol. 11246. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03424-5

    Book  Google Scholar 

  50. Margaria, T., Steffen, B. (eds.): ISoLA 2020, Part II. LNCS, vol. 12477. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61470-6

    Book  Google Scholar 

  51. Margaria, T., Steffen, B. (eds.): ISoLA 2022, Part III. LNCS, vol. 13703. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19759-8

    Book  Google Scholar 

  52. Pasqua, M., Miculan, M.: Behavioral equivalences for AbU: verifying security and safety in distributed IoT systems. Theor. Comput. Sci. 998, 114537 (2024)

    Article  MathSciNet  Google Scholar 

  53. Pasqua, M., Miculan, M.: Local reasoning and attribute-based memory updates for enforcing global invariants in collective adaptive systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2024. LNCS, vol. 15220, pp. 351–367. Springer, Cham (2024)

    Google Scholar 

  54. Pnueli, A., Slutzki, G.: Simple programs and their decision problems. In: Salomaa, A., Steinby, M. (eds.) ICALP 1977. LNCS, vol. 52, pp. 380–390. Springer, Heidelberg (1977). https://doi.org/10.1007/3-540-08342-1_30

    Chapter  Google Scholar 

  55. Poernomo, I.H., Wirsing, M., Crossley, J.N.: Adapting Proofs-as-Programs - The Curry-Howard Protocol. Monographs in Computer Science, Springer, New York (2005). https://doi.org/10.1007/0-387-28183-5

    Book  Google Scholar 

  56. Reisig, W.: Komposition von komponenten-modellen: der schlüssel zur konstruktion großer systeme. In: Bork, D., Karagiannis, D., Mayr, H.C. (eds.) Modellierung 2020, 19–21 Februar 2020, Wien, Österreich. LNI, vol. P-302, p. 11. Gesellschaft für Informatik e.V. (2020)

    Google Scholar 

  57. Saveri, G., Nenzi, L., Bortolussi, L., Silvetti, S.: Is machine learning model checking privacy preserving? In: Margaria, T., Steffen, B. (eds.) ISoLA 2024. LNCS, vol. 15220, pp. 139–155. Springer, Cham (2024)

    Google Scholar 

  58. Sürmeli, J., Yilmaz, S.: Establishing trust in dynamically formed ensembles. In: Margaria, T., Steffen, B. (eds.) ISoLA 2024. LNCS, vol. 15220, pp. 156–172. Springer, Cham (2024)

    Google Scholar 

  59. The Coq Development Team. The Coq Reference Manual release 8.19.2 (2024). https://github.com/coq/coq/releases/tag/V8.19.2. Accessed 13 July 2024

  60. Tiezzi, F., Bourr, K., Bettini, L., Pugliese, R.: Programming multi-robot systems with X-KLAIM. In: [51], pp. 283–300 (2022)

    Google Scholar 

  61. Töpfer, M., Khalyeyev, D., Bureš, T., Hnětynka, P., Plášil, F.: How well do LLMs understand DEECo ensemble-based component architectures. pp. 208–223, (2024)

    Google Scholar 

  62. Wirsing, M., Banâtre, J.-P., Hölzl, M., Rauschmayer, A. (eds.): Software-Intensive Systems and New Computing Paradigms. LNCS, vol. 5380. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89437-7

    Book  Google Scholar 

  63. Wirsing, M., De Nicola, R., Hölzl, M.M.: Rigorous engineering of autonomic ensembles – track introduction. In: [47], pp. 96–98 (2014)

    Google Scholar 

  64. Wirsing, M., De Nicola, R., Jähnichen, S.: Rigorous engineering of collective adaptive systems – introduction to the 4th track edition. In: [51], pp. 3–12 (2022)

    Google Scholar 

  65. Wirsing, M., De Nicola, R., Jähnichen, S.: Rigorous engineering of collective adaptive systems – introduction to the 3rd track edition. In: [50], pp. 161–170 (2020)

    Google Scholar 

  66. Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.): Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16310-9

    Book  Google Scholar 

  67. Ósk Gunnarsdóttir, E., Ingólfsdóttir, A.: The EM-BDD algorithm for learning hidden Markov models. In: Margaria, T., Steffen, B. (eds.) ISoLA 2024. LNCS, vol. 15220, pp. 121–138. Springer, Cham (2024)

    Google Scholar 

Download references

Acknowledgements

As the organisers of the track, we express our gratitude to the authors for their valuable contributions, the reviewers for their expertise and constructive feedback, and all participants for their engaging discussions. We would also like to thank the ISOLA chairs Tiziana Margaria and Bernhard Steffen for giving us the opportunity to organise this track, as well as the Springer-Verlag for their useful Equinocs conference system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Wirsing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wirsing, M., De Nicola, R., Jähnichen, S., Tribastone, M. (2025). Rigorous Engineering of Collective Adaptive Systems Introduction to the 5\(^{\textrm{th}}\) Track Edition. In: Margaria, T., Steffen, B. (eds) Leveraging Applications of Formal Methods, Verification and Validation. Rigorous Engineering of Collective Adaptive Systems. ISoLA 2024. Lecture Notes in Computer Science, vol 15220. Springer, Cham. https://doi.org/10.1007/978-3-031-75107-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-75107-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-75106-6

  • Online ISBN: 978-3-031-75107-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics