[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Parameterized Complexity of Paired Domination

  • Conference paper
  • First Online:
Combinatorial Algorithms (IWOCA 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14764))

Included in the following conference series:

  • 246 Accesses

Abstract

The Paired Domination problem is one of the well-studied variants of the classical Dominating Set problem. In a graph G on n vertices, a dominating set D (set of vertices such that \(N[D]=V(G)\)) is called a paired dominating set of G, if G[D] has perfect matching. In the Paired Domination problem, given a graph G and a positive integer k, the task is to check whether G has a paired dominating set of size at most k. The problem is a variant of the Dominating Set problem, and hence inherits most of the hardness of the Dominating Set problem; however, the same cannot be said about the algorithmic results. In this paper, we study the problem from the perspective of parameterized complexity, both from solution and structural parameterization, and obtain the following results.

  1. 1.

    We design an (non-trivial) exact exponential algorithm running in time \(\mathcal {O}(1.7159^n)\).

  2. 2.

    It admits Strong Exponential Time Hypothesis (SETH) optimal algorithm parameterized by the treewidth (\(\textsf {tw}\)) of the graph G. The algorithm runs in time \(4^{\textsf {tw}} n^{\mathcal {O}(1)}\); and unless SETH fails, there is no algorithm running in time \((4 - \epsilon )^{\textsf {tw}} n^{O(1)}\) for any \(\epsilon > 0\).

  3. 3.

    We design an \(4^d n^{O(1)}\) algorithm parameterized by the distance to cluster graphs. We complement this result by proving that the problem does not admit a polynomial kernel under this parameterization and under parameterization by vertex cover number.

  4. 4.

    Paired Domination admits a polynomial kernel on graphs that exclude a biclique \(K_{i,j}\).

  5. 5.

    We also prove that one of the counting versions of Paired Domination parameterized by cliquewidth admits \(n^{2\textsf {cw}}n^{O(1)}\) time algorithm parameterized by cliquewidth (cw). However, it does not admit an FPT algorithm unless #SETH is false.

N. Andreev—Independent Researcher, Dubai, UAE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 51.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alber, J., Fellows, M.R., Niedermeier, R.: Polynomial-time data reduction for dominating set. J. ACM 51(3), 363–384 (2004)

    Article  MathSciNet  Google Scholar 

  2. Alon, N., Gutner, S.: Linear time algorithms for finding a dominating set of fixed size in degenerated graphs. Algorithmica 54(4), 544–556 (2009)

    Article  MathSciNet  Google Scholar 

  3. Bodlaender, H.L., van Leeuwen, E.J., van Rooij, J.M.M., Vatshelle, M.: Faster algorithms on branch and clique decompositions. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 174–185. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15155-2_17

    Chapter  Google Scholar 

  4. Chen, J., Fernau, H., Kanj, I.A., Xia, G.: Parametric duality and kernelization: lower bounds and upper bounds on kernel size. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 269–280. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31856-9_22

    Chapter  Google Scholar 

  5. Chen, L., Lu, C., Zeng, Z.: Labelling algorithms for paired-domination problems in block and interval graphs. J. Comb. Optim. 19(4), 457–470 (2010)

    Article  MathSciNet  Google Scholar 

  6. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3

    Book  Google Scholar 

  7. Dawar, A., Kreutzer, S.: Domination problems in nowhere-dense classes of graphs. In: Foundations of Software Technology and Theoretical Computer Science—FSTTCS 2009, LIPIcs. Leibniz International Proceedings in Informatics, vol. 4, pp. 157–168. Schloss Dagstuhl – Leibniz Center for Informatics, Wadern (2009)

    Google Scholar 

  8. Desormeaux, W.J., Henning, M.A.: Paired domination in graphs: a survey and recent results. Util. Math. 94, 101–166 (2014)

    MathSciNet  Google Scholar 

  9. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 4th edn. Springer, Cham (2012)

    Google Scholar 

  10. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness I: basic results. SIAM J. Comput. 24(4), 873–921 (1995)

    Article  MathSciNet  Google Scholar 

  11. Fomin, F.V., Grandoni, F., Pyatkin, A.V., Stepanov, A.A.: Combinatorial bounds via measure and conquer: bounding minimal dominating sets and applications. ACM Trans. Algorithms 5(1), 9:1–9:17 (2008)

    Google Scholar 

  12. Fomin, F.V., Thilikos, D.M.: Fast parameterized algorithms for graphs on surfaces: linear kernel and exponential speed-up. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 581–592. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27836-8_50

    Chapter  Google Scholar 

  13. Hanaka, T., Ono, H., Otachi, Y., Uda, S.: Grouped domination parameterized by vertex cover, twin cover, and beyond. In: Mavronicolas, M. (ed.) CIAC 2023. LNCS, vol. 13898, pp. 263–277. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30448-4_19

    Chapter  Google Scholar 

  14. Haynes, T.W., Hedetniemi, S.T., Henning, M.A. (eds.): Topics in Domination in Graphs. Developments in Mathematics, vol. 64. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51117-3

    Book  Google Scholar 

  15. Haynes, T.W., Hedetniemi, S.T., Henning, M.A. (eds.): Structures of Domination in Graphs. Developments in Mathematics, vol. 66. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-58892-2

    Book  Google Scholar 

  16. Haynes, T.W., Hedetniemi, S.T., Slater, P.J. (eds.): Domination in Graphs: Advanced Topics, Monographs and Textbooks in Pure and Applied Mathematics, vol. 209

    Google Scholar 

  17. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in Graphs. Monographs and Textbooks in Pure and Applied Mathematics, vol. 208. Marcel Dekker Inc., New York (1998)

    Google Scholar 

  18. Haynes, T.W., Slater, P.J.: Paired-domination in graphs. Netw. Int. J. 32(3), 199–206 (1998)

    MathSciNet  Google Scholar 

  19. Lokshtanov, D., Marx, D., Saurabh, S.: Known algorithms on graphs of bounded treewidth are probably optimal. ACM Trans. Algorithms 14(2), Article no. 13, 30 (2018)

    Google Scholar 

  20. Philip, G., Raman, V., Sikdar, S.: Polynomial kernels for dominating set in graphs of bounded degeneracy and beyond. ACM Trans. Algorithms 9(1), 11:1–11:23 (2012)

    Google Scholar 

  21. Raman, V., Saurabh, S.: Short cycles make W-hard problems hard: FPT algorithms for W-hard problems in graphs with no short cycles. Algorithmica 52(2), 203–225 (2008)

    Article  MathSciNet  Google Scholar 

  22. van Rooij, J.M.M., Bodlaender, H.L., Rossmanith, P.: Dynamic programming on tree decompositions using generalised fast subset convolution. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 566–577. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04128-0_51

    Chapter  Google Scholar 

  23. Tripathi, V., Kloks, T., Pandey, A., Paul, K., Wang, H.L.: Complexity of paired domination in AT-free and planar graphs. Theor. Comput. Sci. 930, 53–62 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikash Tripathi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Andreev, N., Bliznets, I., Kundu, M., Saurabh, S., Tripathi, V., Verma, S. (2024). Parameterized Complexity of Paired Domination. In: Rescigno, A.A., Vaccaro, U. (eds) Combinatorial Algorithms. IWOCA 2024. Lecture Notes in Computer Science, vol 14764. Springer, Cham. https://doi.org/10.1007/978-3-031-63021-7_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63021-7_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63020-0

  • Online ISBN: 978-3-031-63021-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics