[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Generating Architectural Floor Plans Through Conditional Large Diffusion Model

  • Conference paper
  • First Online:
HCI International 2024 Posters (HCII 2024)

Abstract

This paper introduces a novel method for generating architectural floor plans using Conditional Large Diffusion Models to migrate the limitations of existing generative methods, such as restrictions on rectilinear configurations, limited scalabilities, and the simplicity of details. Central to this study is the development of a large-scale dataset comprising high-quality floor plan images with corresponding condition maps and textual captions. The essential step is to setup the conditions in relative to the architectural floor plan. The data collection and processing align with these condition requirements. The development of the dataset includes manual preparation of 1007 floor plan images as an initial set for training the floor plan recognition models that facilitate the automated annotation, algorithmic generation of the 12000 images with Grasshopper as a supplementary pseudo set for testing the generation effectiveness, and several image captioning and visual question-answering models for producing textural descriptions. The generation models trained on this dataset demonstrates the potential to produce diverse planning options using basic constraints as the conditions, which was evaluated by several user studies. The findings underscore the transformative potential of integrating advanced generative AI technologies in architectural design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 74.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lynch, K.: The Image of the City. Cambridge, M.I.T. Press (2008)

    Google Scholar 

  2. Eastman, C.: The Use of Computers Instead of Drawings in Building Design. AIA J. 63 (1975)

    Google Scholar 

  3. Friedman, Y., Derix, C.: The Flatwriter: Choice by Computer. Progressive Architecture (1971)

    Google Scholar 

  4. Flemming, U.: On the representation and generation of loosely packed arrangements of rectangles. Environ. Plann. B Plann. Des. 13, 189–205 (1986). https://doi.org/10.1068/b130189

    Article  Google Scholar 

  5. Koning, H., Eizenberg, J.: The language of the Prairie: Frank Lloyd Wright’s Prairie houses. Environ. Plann. B Plann. Des. 8, 295–323 (1981). https://doi.org/10.1068/b080295

    Article  Google Scholar 

  6. Stiny, G.: Introduction to Shape and Shape Grammars

    Google Scholar 

  7. Stiny, G., Mitchell, W.J.: The Palladian grammar. Environ. Plann. B. 5, 5–18 (1978). https://doi.org/10.1068/b050005

    Article  Google Scholar 

  8. Baušys, R., Pankrašovaite, I.: Optimization of architectural layout by the improved genetic algorithm. J. Civil Eng. Manag. 11, 13–21 (2005). https://doi.org/10.3846/13923730.2005.9636328

    Article  Google Scholar 

  9. Thakur, M.K., Kumari, M., Das, M.: Architectural layout planning using genetic algorithms. In: 2010 3rd International Conference on Computer Science and Information Technology, pp. 5–11 (2010). https://doi.org/10.1109/ICCSIT.2010.5565165.

  10. Weber, R.E., Mueller, C., Reinhart, C.: Automated floorplan generation in architectural design: a review of methods and applications. Automat. Construct. 140, 104385 (2022). https://doi.org/10.1016/j.autcon.2022.104385

    Article  Google Scholar 

  11. Retsin, G.: Toward discrete architecture: automation takes command. Presented at the ACADIA 2019: Ubiquity and Autonomy, Austin (2019). https://doi.org/10.52842/conf.acadia.2019.532.

  12. Gumin, M.: Wave Function Collapse Algorithm (2016). https://github.com/mxgmn/WaveFunctionCollapse

  13. Hosmer, T., Tigas, P., Reeves, D., He, Z.: Spatial assembly with self-play reinforcement learning. In: Distributed Proximities, Acadia 2020 Proceedings, p. 12 (2020)

    Google Scholar 

  14. Marson, F., Musse, S.R.: Automatic real-time generation of floor plans based on squarified treemaps algorithm. Int. J. Comput. Games Technol. 2010, 1–10 (2010). https://doi.org/10.1155/2010/624817

    Article  Google Scholar 

  15. Wu, W., Fan, L., Liu, L., Wonka, P.: MIQP-based layout design for building interiors. Comput. Graph. Forum. 37, 511–521 (2018). https://doi.org/10.1111/cgf.13380

    Article  Google Scholar 

  16. Chaillou, S.: ArchiGAN: Artificial intelligence x architecture. In: Yuan, P.F., Xie, M., Leach, N., Yao, J., Wang, X. (eds.) Architectural Intelligence: Selected Papers from the 1st International Conference on Computational Design and Robotic Fabrication (CDRF 2019), pp. 117–127. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-6568-7_8

  17. Kalervo, A., Ylioinas, J., Häikiö, M., Karhu, A., Kannala, J.: CubiCasa5K: A Dataset and an Improved Multi-task Model for Floorplan Image Analysis. arXiv preprint arXiv:1904.01920 (2019)

  18. Wu, W., Fu, X.-M., Tang, R., Wang, Y., Qi, Y.-H., Liu, L.: Data-driven interior plan generation for residential buildings. ACM Trans. Graph. 38, 1–12 (2019). https://doi.org/10.1145/3355089.3356556

    Article  Google Scholar 

  19. Gozalo-Brizuela, R., Garrido-Merchan, E.C.: ChatGPT is not all you need. A State of the Art Review of large Generative AI Models. arXiv preprint arXiv:2301.04655 (2023)

  20. runwayml/stable-diffusion-v1-5 · Hugging Face. https://huggingface.co/runwayml/stable-diffusion-v1-5. Accessed 08 May 2023

  21. Midjourney. https://www.midjourney.com/home/. Accessed 10 Sept 2023

  22. Zhang, L., Agrawala, M.: Adding Conditional Control to Text-to-Image Diffusion Models. arXiv preprint arXiv:2302.05543 (2023). https://doi.org/10.48550/arXiv.2302.05543.

  23. He, Z., Li, X., Fan, L., Wang, H.J.: Revamping interior design workflow through generative artificial intelligence. In: Stephanidis, C., Antona, M., Ntoa, S., and Salvendy, G. (eds.) HCI International 2023 Posters, pp. 607–613. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-36001-5_78

  24. Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv preprint arXiv:1505.04597 (2015)

  25. PlanFinder. https://www.planfinder.xyz/. Accessed 29 Aug 2023

  26. Li, J., Li, D., Savarese, S., Hoi, S.: BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models, arXiv preprint arXiv:2301.12597 (2023). https://doi.org/10.48550/arXiv.2301.12597

  27. Zhu, D., Chen, J., Shen, X., Li, X., Elhoseiny, M.: MiniGPT-4: Enhancing Vision-Language Understanding with Advanced Large Language Models. arXiv preprint arXiv:2304.10592 (2023)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Fan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, Z. et al. (2024). Generating Architectural Floor Plans Through Conditional Large Diffusion Model. In: Stephanidis, C., Antona, M., Ntoa, S., Salvendy, G. (eds) HCI International 2024 Posters. HCII 2024. Communications in Computer and Information Science, vol 2120. Springer, Cham. https://doi.org/10.1007/978-3-031-62110-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-62110-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-62109-3

  • Online ISBN: 978-3-031-62110-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics