Abstract
Hierarchical image segmentation aims to capture the structure of objects of different sizes at different scales and helps to understand the scene. With the success of neural networks for image segmentation and the recent emergence of object and part segmentation datasets, the task of supervised learning of segmentation hierarchies naturally arises. In a previous work, we proposed a differentiable ultrametric layer that transforms any dissimilarity measure into an ultrametric distance equivalent to a hierarchical segmentation. In this paper, we study several loss functions for end-to-end learning of a neural network model predicting hierarchical segmentations. In particular, we propose a generalization of the Rand index for hierarchical segmentation and propose exact and approximate algorithms to compute it. We introduce new metrics to compare hierarchical segmentations, and we demonstrate the suitability of the proposed pipeline with several possible loss function combinations on a simulated hierarchical dataset.
This work is supported by the French ANR grant ANR-20-CE23-0019, and was granted access to the HPC resources of IDRIS under the allocation 2023-AD011013101R1 made by GENCI.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Al-Huda, Z., Peng, B., Yang, Y., Algburi, R.N.A.: Object scale selection of hierarchical image segmentation with deep seeds. IET Image Process. 15, 191–205 (2020)
Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE TPAMI 33(5), 898–916 (2010)
Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Gonnet, G.H., Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg (2000). https://doi.org/10.1007/10719839_9
Chen, X., Mottaghi, R., Liu, X., Fidler, S., Urtasun, R., Yuille, A.: Detect what you can: detecting and representing objects using holistic models and body parts. In: IEEE CVPR (2014)
Chierchia, G., Perret, B.: Ultrametric fitting by gradient descent. In: NeurIPS, vol. 32. Curran Associates, Inc. (2019)
Cousty, J., Najman, L., Kenmochi, Y., Guimarães, S.: Hierarchical segmentations with graphs: quasi-flat zones, minimum spanning trees, and saliency maps. JMIV 60(4), 479–502 (2018)
Elizar, E., Zulkifley, M.A., Muharar, R., Zaman, M.H.M., Mustaza, S.M.: A review on multiscale-deep-learning applications. Sensors 22(19), 7384 (2022)
de Geus, D., Meletis, P., Lu, C., Wen, X., Dubbelman, G.: Part-aware panoptic segmentation. In: IEEE CVPR (2021)
He, J., et al.: PartImageNet: a large, high-quality dataset of parts. CoRR (2021)
Kendall, A., Gal, Y., Cipolla, R.: Multi-task learning using uncertainty to weigh losses for scene geometry and semantics (2018)
Lapertot, R., Chierchia, G., Perret, B.: Supervised learning of hierarchical image segmentation. In: Vasconcelos, V., Domingues, I., Paredes, S. (eds.) CIARP 2023. LNCS, vol. 14469, pp. 201–213. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-49018-7_15
Li, L., Zhou, T., Wang, W., Li, J., Yang, Y.: Deep hierarchical semantic segmentation. In: IEEE CVPR, pp. 1236–1247 (2022)
Maninis, K., Pont-Tuset, J., Arbeláez, P., Gool, L.V.: Convolutional oriented boundaries: from image segmentation to high-level tasks. IEEE TPAMI 40, 819–833 (2017)
Meletis, P., Wen, X., Lu, C., de Geus, D., Dubbelman, G.: Cityscapes-panoptic-parts and pascal-panoptic-parts datasets for scene understanding. CoRR (2020)
Najman, L., Cousty, J., Perret, B.: Playing with Kruskal: algorithms for morphological trees in edge-weighted graphs. In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 135–146. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38294-9_12
Ôn Vû Ngoc, M., et al.: Introducing the boundary-aware loss for deep image segmentation. In: BMVC 2021 (2021)
Perret, B., Cousty, J., Guimarães, S.J.F., Kenmochi, Y., Najman, L.: Removing non-significant regions in hierarchical clustering and segmentation. PRL 128, 433–439 (2019)
Pont-Tuset, J., Arbeláez, P., Barron, J., Marques, F., Malik, J.: Multiscale combinatorial grouping for image segmentation and object proposal generation. arXiv:1503.00848 (2015)
Ramanathan, V., et al.: PACO: parts and attributes of common objects (2023)
Ren, Z., Shakhnarovich, G.: Image segmentation by cascaded region agglomeration. In: IEEE CVPR, pp. 2011–2018 (2013)
Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Smith, L.N., Topin, N.: Super-convergence: very fast training of residual networks using large learning rates. CoRR (2017)
Thisanke, H., Deshan, C., Chamith, K., Seneviratne, S., Vidanaarachchi, R., Herath, D.: Semantic segmentation using vision transformers: a survey (2023)
Wolf, S., Schott, L., Köthe, U., Hamprecht, F.: Learned watershed: end-to-end learning of seeded segmentation (2017)
Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., Luo, P.: SegFormer: simple and efficient design for semantic segmentation with transformers (2021)
Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: FairMOT: on the fairness of detection and re-identification in multiple object tracking. IJCV 129(11), 3069–3087 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Lapertot, R., Chierchia, G., Perret, B. (2024). End-to-End Ultrametric Learning for Hierarchical Segmentation. In: Brunetti, S., Frosini, A., Rinaldi, S. (eds) Discrete Geometry and Mathematical Morphology. DGMM 2024. Lecture Notes in Computer Science, vol 14605. Springer, Cham. https://doi.org/10.1007/978-3-031-57793-2_22
Download citation
DOI: https://doi.org/10.1007/978-3-031-57793-2_22
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-57792-5
Online ISBN: 978-3-031-57793-2
eBook Packages: Computer ScienceComputer Science (R0)