[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

LaQuE: Enabling Entity Search at Scale

  • Conference paper
  • First Online:
Advances in Information Retrieval (ECIR 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14609))

Included in the following conference series:

  • 858 Accesses

Abstract

Entity search plays a crucial role in various information access domains, where users seek information about specific entities. Despite significant research efforts to improve entity search methods, the availability of large-scale resources and extensible frameworks has been limiting progress. In this work, we present LaQuE (Large-scale Queries for Entity search), a curated framework for entity search, which includes a reproducible and extensible code base as well as a large relevance judgment collection consisting of real-user queries based on the ORCAS collection. LaQuE is industry-scale and suitable for training complex neural models for entity search. We develop methods for curating and judging entity collections, as well as training entity search methods based on LaQuE. We additionally establish strong baselines within LaQuE based on various retrievers, including traditional bag-of-words-based methods and neural-based models. We show that training neural entity search models on LaQuE enhances retrieval effectiveness compared to the state-of-the-art. Additionally, we categorize the released queries in LaQuE based on their popularity and difficulty, encouraging research on more challenging queries for the entity search task. We publicly release LaQuE at https://github.com/Narabzad/LaQuE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 87.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://trec-car.cs.unh.edu/.

  2. 2.

    https://github.com/iai-group/DBpedia-Entity.

  3. 3.

    http://downloads.dbpedia.org/wiki-archive/Downloads2015-10.html.

References

  1. Alexander, D., Kusa, W., de Vries, A.P.: ORCAS-I: queries annotated with intent using weak supervision. In: Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 3057–3066 (2022)

    Google Scholar 

  2. Arabzadeh, N., Mitra, B., Bagheri, E.: MS MARCO chameleons: challenging the MS MARCO leaderboard with extremely obstinate queries. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pp. 4426–4435 (2021)

    Google Scholar 

  3. Arabzadeh, N., Vtyurina, A., Yan, X., Clarke, C.L.: Shallow pooling for sparse labels. Inf. Retrieval J. 25(4), 365–385 (2022)

    Article  Google Scholar 

  4. Bagheri, E., Ensan, F., Al-Obeidat, F.: Neural word and entity embeddings for ad hoc retrieval. Inf. Process. Manage. 54(4), 657–673 (2018)

    Article  Google Scholar 

  5. Balog, K.: Entity retrieval (2018)

    Google Scholar 

  6. Balog, K., Neumayer, R.: Hierarchical target type identification for entity-oriented queries. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management, pp. 2391–2394 (2012)

    Google Scholar 

  7. Balog, K., Neumayer, R.: A test collection for entity search in DBpedia. In: Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 737–740 (2013)

    Google Scholar 

  8. Balog, K., Serdyukov, P., Vries, A.P.D.: Overview of the TREC 2010 entity track. Technical report, Norwegian Univ of Science and Technology Trondheim (2010)

    Google Scholar 

  9. Büttcher, S., Clarke, C.L., Yeung, P.C., Soboroff, I.: Reliable information retrieval evaluation with incomplete and biased judgements. In: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 63–70 (2007)

    Google Scholar 

  10. Carmel, D., Yom-Tov, E., Darlow, A., Pelleg, D.: What makes a query difficult? In: Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 390–397 (2006)

    Google Scholar 

  11. Carterette, B., Jones, R.: Evaluating search engines by modeling the relationship between relevance and clicks. In: Advances in Neural Information Processing Systems, vol. 20 (2007)

    Google Scholar 

  12. Chatterjee, S., Dietz, L.: Entity retrieval using fine-grained entity aspects. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1662–1666 (2021)

    Google Scholar 

  13. Chen, T., Zhang, M., Lu, J., Bendersky, M., Najork, M.: Out-of-domain semantics to the rescue! Zero-shot hybrid retrieval models. In: Hagen, M., et al. (eds.) ECIR 2022, Part I. LNCS, vol. 13185, pp. 95–110. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99736-6_7

    Chapter  Google Scholar 

  14. Chuklin, A., Serdyukov, P., De Rijke, M.: Click model-based information retrieval metrics. In: Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 493–502 (2013)

    Google Scholar 

  15. Cuzzola, J., Jovanović, J., Bagheri, E.: RysannMD: a biomedical semantic annotator balancing speed and accuracy. J. Biomed. Inform. 71, 91–109 (2017)

    Article  Google Scholar 

  16. De Cao, N., Izacard, G., Riedel, S., Petroni, F.: Autoregressive entity retrieval. arXiv preprint arXiv:2010.00904 (2020)

  17. Dietz, L., Foley, J.: TREC CAR Y3: complex answer retrieval overview. In: Proceedings of Text REtrieval Conference (TREC) (2019)

    Google Scholar 

  18. Dietz, L., Verma, M., Radlinski, F., Craswell, N.: TREC complex answer retrieval overview. In: TREC (2017)

    Google Scholar 

  19. Ensan, F., Bagheri, E.: Document retrieval model through semantic linking. In: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, pp. 181–190 (2017)

    Google Scholar 

  20. Feng, Y., Zarrinkalam, F., Bagheri, E., Fani, H., Al-Obeidat, F.: Entity linking of tweets based on dominant entity candidates. Soc. Netw. Anal. Min. 8, 1–16 (2018)

    Article  Google Scholar 

  21. Fetahu, B., Fang, A., Rokhlenko, O., Malmasi, S.: Gazetteer enhanced named entity recognition for code-mixed web queries. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1677–1681 (2021)

    Google Scholar 

  22. Fetahu, B., Gadiraju, U., Dietze, S.: Improving entity retrieval on structured data. In: Arenas, M., et al. (eds.) ISWC 2015, Part I. LNCS, vol. 9366, pp. 474–491. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25007-6_28

    Chapter  Google Scholar 

  23. Gerritse, E.J., Hasibi, F., de Vries, A.P.: Graph-embedding empowered entity retrieval. In: Jose, J.M., et al. (eds.) ECIR 2020, Part I. LNCS, vol. 12035, pp. 97–110. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45439-5_7

    Chapter  Google Scholar 

  24. Gillick, D., et al.: Learning dense representations for entity retrieval. arXiv preprint arXiv:1909.10506 (2019)

  25. Hasibi, F., Balog, K., Bratsberg, S.E.: Exploiting entity linking in queries for entity retrieval. In: Proceedings of the 2016 ACM International Conference on the Theory of Information Retrieval, pp. 209–218 (2016)

    Google Scholar 

  26. Hasibi, F., Balog, K., Garigliotti, D., Zhang, S.: Nordlys: a toolkit for entity-oriented and semantic search. In: Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1289–1292 (2017)

    Google Scholar 

  27. Hasibi, F., et al.: DBpedia-entity v2: a test collection for entity search. In: Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1265–1268 (2017)

    Google Scholar 

  28. Hosseini, H., Mansouri, M., Bagheri, E.: A systemic functional linguistics approach to implicit entity recognition in tweets. Inf. Process. Manage. 59(4), 102957 (2022)

    Article  Google Scholar 

  29. Hosseini, H., Nguyen, T.T., Wu, J., Bagheri, E.: Implicit entity linking in tweets: an ad-hoc retrieval approach. Appl. Ontol. 14(4), 451–477 (2019)

    Article  Google Scholar 

  30. Jafarzadeh, P., Amirmahani, Z., Ensan, F.: Learning to rank knowledge subgraph nodes for entity retrieval. In: Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 2519–2523 (2022)

    Google Scholar 

  31. Johnson, J., Douze, M., Jégou, H.: Billion-scale similarity search with GPUs. IEEE Trans. Big Data 7(3), 535–547 (2019)

    Article  Google Scholar 

  32. Karpukhin, V., et al.: Dense passage retrieval for open-domain question answering. arXiv preprint arXiv:2004.04906 (2020)

  33. Khandelwal, U., Levy, O., Jurafsky, D., Zettlemoyer, L., Lewis, M.: Generalization through memorization: nearest neighbor language models. arXiv preprint arXiv:1911.00172 (2019)

  34. Lin, J., Nogueira, R.F., Yates, A.: Pretrained transformers for text ranking: BERT and beyond. CoRR abs/2010.06467 (2020). https://arxiv.org/abs/2010.06467

  35. Lin, X., Lam, W., Lai, K.P.: Entity retrieval in the knowledge graph with hierarchical entity type and content. In: Proceedings of the 2018 ACM SIGIR International Conference on Theory of Information Retrieval, pp. 211–214 (2018)

    Google Scholar 

  36. Macdonald, C., Ounis, I.: Voting for candidates: adapting data fusion techniques for an expert search task. In: Proceedings of the 15th ACM International Conference on Information and Knowledge Management, pp. 387–396 (2006)

    Google Scholar 

  37. Macdonald, C., Ounis, I.: Usefulness of quality click-through data for training. In: Proceedings of the 2009 Workshop on Web Search Click Data, pp. 75–79 (2009)

    Google Scholar 

  38. Macdonald, C., Tonellotto, N.: On approximate nearest neighbour selection for multi-stage dense retrieval. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pp. 3318–3322 (2021)

    Google Scholar 

  39. Magdy, W., Jones, G.J.F.: Examining the robustness of evaluation metrics for patent retrieval with incomplete relevance judgements. In: Agosti, M., Ferro, N., Peters, C., de Rijke, M., Smeaton, A. (eds.) CLEF 2010. LNCS, vol. 6360, pp. 82–93. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15998-5_10

    Chapter  Google Scholar 

  40. Malmasi, S., Fang, A., Fetahu, B., Kar, S., Rokhlenko, O.: MultiCoNER: a large-scale multilingual dataset for complex named entity recognition. arXiv preprint arXiv:2208.14536 (2022)

  41. Meng, T., Fang, A., Rokhlenko, O., Malmasi, S.: GEMNET: effective gated gazetteer representations for recognizing complex entities in low-context input. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 1499–1512 (2021)

    Google Scholar 

  42. Nguyen, T., Rosenberg, M., Song, X., Gao, J., Tiwary, S., Majumder, R., Deng, L.: MS MARCO: a human generated machine reading comprehension dataset. Choice 2640, 660 (2016)

    Google Scholar 

  43. Nikolaev, F., Kotov, A.: Joint word and entity embeddings for entity retrieval from a knowledge graph. In: Jose, J.M., et al. (eds.) ECIR 2020. LNCS, vol. 12035, pp. 141–155. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45439-5_10

    Chapter  Google Scholar 

  44. Pound, J., Mika, P., Zaragoza, H.: Ad-hoc object retrieval in the web of data. In: Proceedings of the 19th International Conference on World Wide Web, pp. 771–780 (2010)

    Google Scholar 

  45. Qu, C., Yang, L., Chen, C., Qiu, M., Croft, W.B., Iyyer, M.: Open-retrieval conversational question answering. In: SIGIR (2020)

    Google Scholar 

  46. Reimers, N., Gurevych, I.: Sentence-BERT: sentence embeddings using Siamese BERT-networks. arXiv preprint arXiv:1908.10084 (2019)

  47. Reimers, N., Gurevych, I.: Making monolingual sentence embeddings multilingual using knowledge distillation. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics (2020). https://arxiv.org/abs/2004.09813

  48. Reimers, N., Gurevych, I.: The curse of dense low-dimensional information retrieval for large index sizes. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), pp. 605–611. Association for Computational Linguistics (2021). https://arxiv.org/abs/2012.14210

  49. Robertson, S.E., Walker, S., Jones, S., Hancock-Beaulieu, M.M., Gatford, M., et al.: Okapi at TREC-3. Nist Spec. Publ. Sp 109, 109 (1995)

    Google Scholar 

  50. Scholer, F., Shokouhi, M., Billerbeck, B., Turpin, A.: Using clicks as implicit judgments: expectations versus observations. In: Macdonald, C., Ounis, I., Plachouras, V., Ruthven, I., White, R.W. (eds.) ECIR 2008. LNCS, vol. 4956, pp. 28–39. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78646-7_6

    Chapter  Google Scholar 

  51. Sciavolino, C., Zhong, Z., Lee, J., Chen, D.: Simple entity-centric questions challenge dense retrievers. arXiv preprint arXiv:2109.08535 (2021)

  52. Shehata, D., Arabzadeh, N., Clarke, C.L.A.: Early stage sparse retrieval with entity linking (2022). https://doi.org/10.48550/ARXIV.2208.04887, https://arxiv.org/abs/2208.04887

  53. Shehata, D., Arabzadeh, N., Clarke, C.L.: Early stage sparse retrieval with entity linking. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 4464–4469 (2022)

    Google Scholar 

  54. Song, F., Croft, W.B.: A general language model for information retrieval. In: Proceedings of the Eighth International Conference on Information and Knowledge Management, pp. 316–321 (1999)

    Google Scholar 

  55. Thakur, N., Reimers, N., Daxenberger, J., Gurevych, I.: Augmented SBERT: data augmentation method for improving bi-encoders for pairwise sentence scoring tasks. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 296–310. Association for Computational Linguistics, Online (2021). https://arxiv.org/abs/2010.08240

  56. Van Gysel, C., de Rijke, M., Kanoulas, E.: Semantic entity retrieval toolkit. arXiv preprint arXiv:1706.03757 (2017)

  57. Wu, L., Petroni, F., Josifoski, M., Riedel, S., Zettlemoyer, L.: Scalable zero-shot entity linking with dense entity retrieval. arXiv preprint arXiv:1911.03814 (2019)

  58. Zhan, J., Mao, J., Liu, Y., Zhang, M., Ma, S.: RepBERT: contextualized text embeddings for first-stage retrieval. arXiv preprint arXiv:2006.15498 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Negar Arabzadeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arabzadeh, N., Bigdeli, A., Bagheri, E. (2024). LaQuE: Enabling Entity Search at Scale. In: Goharian, N., et al. Advances in Information Retrieval. ECIR 2024. Lecture Notes in Computer Science, vol 14609. Springer, Cham. https://doi.org/10.1007/978-3-031-56060-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-56060-6_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56059-0

  • Online ISBN: 978-3-031-56060-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics