Abstract
Entity search plays a crucial role in various information access domains, where users seek information about specific entities. Despite significant research efforts to improve entity search methods, the availability of large-scale resources and extensible frameworks has been limiting progress. In this work, we present LaQuE (Large-scale Queries for Entity search), a curated framework for entity search, which includes a reproducible and extensible code base as well as a large relevance judgment collection consisting of real-user queries based on the ORCAS collection. LaQuE is industry-scale and suitable for training complex neural models for entity search. We develop methods for curating and judging entity collections, as well as training entity search methods based on LaQuE. We additionally establish strong baselines within LaQuE based on various retrievers, including traditional bag-of-words-based methods and neural-based models. We show that training neural entity search models on LaQuE enhances retrieval effectiveness compared to the state-of-the-art. Additionally, we categorize the released queries in LaQuE based on their popularity and difficulty, encouraging research on more challenging queries for the entity search task. We publicly release LaQuE at https://github.com/Narabzad/LaQuE.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alexander, D., Kusa, W., de Vries, A.P.: ORCAS-I: queries annotated with intent using weak supervision. In: Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 3057–3066 (2022)
Arabzadeh, N., Mitra, B., Bagheri, E.: MS MARCO chameleons: challenging the MS MARCO leaderboard with extremely obstinate queries. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pp. 4426–4435 (2021)
Arabzadeh, N., Vtyurina, A., Yan, X., Clarke, C.L.: Shallow pooling for sparse labels. Inf. Retrieval J. 25(4), 365–385 (2022)
Bagheri, E., Ensan, F., Al-Obeidat, F.: Neural word and entity embeddings for ad hoc retrieval. Inf. Process. Manage. 54(4), 657–673 (2018)
Balog, K.: Entity retrieval (2018)
Balog, K., Neumayer, R.: Hierarchical target type identification for entity-oriented queries. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management, pp. 2391–2394 (2012)
Balog, K., Neumayer, R.: A test collection for entity search in DBpedia. In: Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 737–740 (2013)
Balog, K., Serdyukov, P., Vries, A.P.D.: Overview of the TREC 2010 entity track. Technical report, Norwegian Univ of Science and Technology Trondheim (2010)
Büttcher, S., Clarke, C.L., Yeung, P.C., Soboroff, I.: Reliable information retrieval evaluation with incomplete and biased judgements. In: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 63–70 (2007)
Carmel, D., Yom-Tov, E., Darlow, A., Pelleg, D.: What makes a query difficult? In: Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 390–397 (2006)
Carterette, B., Jones, R.: Evaluating search engines by modeling the relationship between relevance and clicks. In: Advances in Neural Information Processing Systems, vol. 20 (2007)
Chatterjee, S., Dietz, L.: Entity retrieval using fine-grained entity aspects. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1662–1666 (2021)
Chen, T., Zhang, M., Lu, J., Bendersky, M., Najork, M.: Out-of-domain semantics to the rescue! Zero-shot hybrid retrieval models. In: Hagen, M., et al. (eds.) ECIR 2022, Part I. LNCS, vol. 13185, pp. 95–110. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99736-6_7
Chuklin, A., Serdyukov, P., De Rijke, M.: Click model-based information retrieval metrics. In: Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 493–502 (2013)
Cuzzola, J., Jovanović, J., Bagheri, E.: RysannMD: a biomedical semantic annotator balancing speed and accuracy. J. Biomed. Inform. 71, 91–109 (2017)
De Cao, N., Izacard, G., Riedel, S., Petroni, F.: Autoregressive entity retrieval. arXiv preprint arXiv:2010.00904 (2020)
Dietz, L., Foley, J.: TREC CAR Y3: complex answer retrieval overview. In: Proceedings of Text REtrieval Conference (TREC) (2019)
Dietz, L., Verma, M., Radlinski, F., Craswell, N.: TREC complex answer retrieval overview. In: TREC (2017)
Ensan, F., Bagheri, E.: Document retrieval model through semantic linking. In: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, pp. 181–190 (2017)
Feng, Y., Zarrinkalam, F., Bagheri, E., Fani, H., Al-Obeidat, F.: Entity linking of tweets based on dominant entity candidates. Soc. Netw. Anal. Min. 8, 1–16 (2018)
Fetahu, B., Fang, A., Rokhlenko, O., Malmasi, S.: Gazetteer enhanced named entity recognition for code-mixed web queries. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1677–1681 (2021)
Fetahu, B., Gadiraju, U., Dietze, S.: Improving entity retrieval on structured data. In: Arenas, M., et al. (eds.) ISWC 2015, Part I. LNCS, vol. 9366, pp. 474–491. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25007-6_28
Gerritse, E.J., Hasibi, F., de Vries, A.P.: Graph-embedding empowered entity retrieval. In: Jose, J.M., et al. (eds.) ECIR 2020, Part I. LNCS, vol. 12035, pp. 97–110. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45439-5_7
Gillick, D., et al.: Learning dense representations for entity retrieval. arXiv preprint arXiv:1909.10506 (2019)
Hasibi, F., Balog, K., Bratsberg, S.E.: Exploiting entity linking in queries for entity retrieval. In: Proceedings of the 2016 ACM International Conference on the Theory of Information Retrieval, pp. 209–218 (2016)
Hasibi, F., Balog, K., Garigliotti, D., Zhang, S.: Nordlys: a toolkit for entity-oriented and semantic search. In: Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1289–1292 (2017)
Hasibi, F., et al.: DBpedia-entity v2: a test collection for entity search. In: Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1265–1268 (2017)
Hosseini, H., Mansouri, M., Bagheri, E.: A systemic functional linguistics approach to implicit entity recognition in tweets. Inf. Process. Manage. 59(4), 102957 (2022)
Hosseini, H., Nguyen, T.T., Wu, J., Bagheri, E.: Implicit entity linking in tweets: an ad-hoc retrieval approach. Appl. Ontol. 14(4), 451–477 (2019)
Jafarzadeh, P., Amirmahani, Z., Ensan, F.: Learning to rank knowledge subgraph nodes for entity retrieval. In: Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 2519–2523 (2022)
Johnson, J., Douze, M., Jégou, H.: Billion-scale similarity search with GPUs. IEEE Trans. Big Data 7(3), 535–547 (2019)
Karpukhin, V., et al.: Dense passage retrieval for open-domain question answering. arXiv preprint arXiv:2004.04906 (2020)
Khandelwal, U., Levy, O., Jurafsky, D., Zettlemoyer, L., Lewis, M.: Generalization through memorization: nearest neighbor language models. arXiv preprint arXiv:1911.00172 (2019)
Lin, J., Nogueira, R.F., Yates, A.: Pretrained transformers for text ranking: BERT and beyond. CoRR abs/2010.06467 (2020). https://arxiv.org/abs/2010.06467
Lin, X., Lam, W., Lai, K.P.: Entity retrieval in the knowledge graph with hierarchical entity type and content. In: Proceedings of the 2018 ACM SIGIR International Conference on Theory of Information Retrieval, pp. 211–214 (2018)
Macdonald, C., Ounis, I.: Voting for candidates: adapting data fusion techniques for an expert search task. In: Proceedings of the 15th ACM International Conference on Information and Knowledge Management, pp. 387–396 (2006)
Macdonald, C., Ounis, I.: Usefulness of quality click-through data for training. In: Proceedings of the 2009 Workshop on Web Search Click Data, pp. 75–79 (2009)
Macdonald, C., Tonellotto, N.: On approximate nearest neighbour selection for multi-stage dense retrieval. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pp. 3318–3322 (2021)
Magdy, W., Jones, G.J.F.: Examining the robustness of evaluation metrics for patent retrieval with incomplete relevance judgements. In: Agosti, M., Ferro, N., Peters, C., de Rijke, M., Smeaton, A. (eds.) CLEF 2010. LNCS, vol. 6360, pp. 82–93. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15998-5_10
Malmasi, S., Fang, A., Fetahu, B., Kar, S., Rokhlenko, O.: MultiCoNER: a large-scale multilingual dataset for complex named entity recognition. arXiv preprint arXiv:2208.14536 (2022)
Meng, T., Fang, A., Rokhlenko, O., Malmasi, S.: GEMNET: effective gated gazetteer representations for recognizing complex entities in low-context input. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 1499–1512 (2021)
Nguyen, T., Rosenberg, M., Song, X., Gao, J., Tiwary, S., Majumder, R., Deng, L.: MS MARCO: a human generated machine reading comprehension dataset. Choice 2640, 660 (2016)
Nikolaev, F., Kotov, A.: Joint word and entity embeddings for entity retrieval from a knowledge graph. In: Jose, J.M., et al. (eds.) ECIR 2020. LNCS, vol. 12035, pp. 141–155. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45439-5_10
Pound, J., Mika, P., Zaragoza, H.: Ad-hoc object retrieval in the web of data. In: Proceedings of the 19th International Conference on World Wide Web, pp. 771–780 (2010)
Qu, C., Yang, L., Chen, C., Qiu, M., Croft, W.B., Iyyer, M.: Open-retrieval conversational question answering. In: SIGIR (2020)
Reimers, N., Gurevych, I.: Sentence-BERT: sentence embeddings using Siamese BERT-networks. arXiv preprint arXiv:1908.10084 (2019)
Reimers, N., Gurevych, I.: Making monolingual sentence embeddings multilingual using knowledge distillation. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics (2020). https://arxiv.org/abs/2004.09813
Reimers, N., Gurevych, I.: The curse of dense low-dimensional information retrieval for large index sizes. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), pp. 605–611. Association for Computational Linguistics (2021). https://arxiv.org/abs/2012.14210
Robertson, S.E., Walker, S., Jones, S., Hancock-Beaulieu, M.M., Gatford, M., et al.: Okapi at TREC-3. Nist Spec. Publ. Sp 109, 109 (1995)
Scholer, F., Shokouhi, M., Billerbeck, B., Turpin, A.: Using clicks as implicit judgments: expectations versus observations. In: Macdonald, C., Ounis, I., Plachouras, V., Ruthven, I., White, R.W. (eds.) ECIR 2008. LNCS, vol. 4956, pp. 28–39. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78646-7_6
Sciavolino, C., Zhong, Z., Lee, J., Chen, D.: Simple entity-centric questions challenge dense retrievers. arXiv preprint arXiv:2109.08535 (2021)
Shehata, D., Arabzadeh, N., Clarke, C.L.A.: Early stage sparse retrieval with entity linking (2022). https://doi.org/10.48550/ARXIV.2208.04887, https://arxiv.org/abs/2208.04887
Shehata, D., Arabzadeh, N., Clarke, C.L.: Early stage sparse retrieval with entity linking. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 4464–4469 (2022)
Song, F., Croft, W.B.: A general language model for information retrieval. In: Proceedings of the Eighth International Conference on Information and Knowledge Management, pp. 316–321 (1999)
Thakur, N., Reimers, N., Daxenberger, J., Gurevych, I.: Augmented SBERT: data augmentation method for improving bi-encoders for pairwise sentence scoring tasks. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 296–310. Association for Computational Linguistics, Online (2021). https://arxiv.org/abs/2010.08240
Van Gysel, C., de Rijke, M., Kanoulas, E.: Semantic entity retrieval toolkit. arXiv preprint arXiv:1706.03757 (2017)
Wu, L., Petroni, F., Josifoski, M., Riedel, S., Zettlemoyer, L.: Scalable zero-shot entity linking with dense entity retrieval. arXiv preprint arXiv:1911.03814 (2019)
Zhan, J., Mao, J., Liu, Y., Zhang, M., Ma, S.: RepBERT: contextualized text embeddings for first-stage retrieval. arXiv preprint arXiv:2006.15498 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Arabzadeh, N., Bigdeli, A., Bagheri, E. (2024). LaQuE: Enabling Entity Search at Scale. In: Goharian, N., et al. Advances in Information Retrieval. ECIR 2024. Lecture Notes in Computer Science, vol 14609. Springer, Cham. https://doi.org/10.1007/978-3-031-56060-6_18
Download citation
DOI: https://doi.org/10.1007/978-3-031-56060-6_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-56059-0
Online ISBN: 978-3-031-56060-6
eBook Packages: Computer ScienceComputer Science (R0)