Abstract
Weakly Supervised Object Detection (WSOD) with only image-level annotation has recently attracted wide attention. Many existing methods ignore the inter-image relationship of instances which share similar characteristics while can certainly be determined not to belong to the same category. Therefore, in order to make full use of the weak label, we propose the Negative Prototypes Guided Contrastive learning (NPGC) architecture. Firstly, we define Negative Prototype as the proposal with the highest confidence score misclassified for the category that does not appear in the label. Unlike other methods that only utilize category positive feature, we construct an online updated global feature bank to store both positive prototypes and negative prototypes. Meanwhile, we propose a pseudo label sampling module to mine reliable instances and discard the easily misclassified instances based on the feature similarity with corresponding prototypes in global feature bank. Finally, we follow the contrastive learning paradigm to optimize the proposal’s feature representation by attracting same class samples closer and pushing different class samples away in the embedding space. Extensive experiments have been conducted on VOC07, VOC12 datasets, which shows that our proposed method achieves the state-of-the-art performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arbeláez, P., Pont-Tuset, J., Barron, J.T., Marques, F., Malik, J.: Multiscale combinatorial grouping. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 328–335 (2014)
Bilen, H., Vedaldi, A.: Weakly supervised deep detection networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2846–2854 (2016)
Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)
Chen, Z., Fu, Z., Jiang, R., Chen, Y., Hua, X.S.: Slv: Spatial likelihood voting for weakly supervised object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12995–13004 (2020)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)
Dong, B., Huang, Z., Guo, Y., Wang, Q., Niu, Z., Zuo, W.: Boosting weakly supervised object detection via learning bounding box adjusters. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2876–2885 (2021)
Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (voc) challenge. Int. J. Comput. Vision 88, 303–338 (2010)
Gao, M., Li, A., Yu, R., Morariu, V.I., Davis, L.S.: C-wsl: Count-guided weakly supervised localization. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 152–168 (2018)
Gao, W., et al.: Ts-cam: Token semantic coupled attention map for weakly supervised object localization. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2886–2895 (2021)
Gao, Y., et al.: C-midn: Coupled multiple instance detection network with segmentation guidance for weakly supervised object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9834–9843 (2019)
Ghiasi, G., et al.: Simple copy-paste is a strong data augmentation method for instance segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision And Pattern Recognition, pp. 2918–2928 (2021)
Girshick, R.: Fast r-CNN. In: Proceedings of the IEEE International Conference On Computer Vision, pp. 1440–1448 (2015)
Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference On Computer Vision And Pattern Recognition, pp. 580–587 (2014)
Gutmann, M., Hyvärinen, A.: Noise-contrastive estimation: A new estimation principle for unnormalized statistical models. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 297–304. JMLR Workshop and Conference Proceedings (2010)
He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference On Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)
Hjelm, R.D., et al.: Learning deep representations by mutual information estimation and maximization. arXiv preprint arXiv:1808.06670 (2018)
Huang, Z., Ke, W., Huang, D.: Improving object detection with inverted attention. In: 2020 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1294–1302. IEEE (2020)
Kantorov, V., Oquab, M., Cho, M., Laptev, I.: Contextlocnet: Context-aware deep network models for weakly supervised localization. In: Computer Vision-ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part V 14. pp. 350–365. Springer (2016). https://doi.org/10.1007/978-3-319-46454-1_22
Khosla, P., et al.: Supervised contrastive learning. Adv. Neural. Inf. Process. Syst. 33, 18661–18673 (2020)
Kosugi, S., Yamasaki, T., Aizawa, K.: Object-aware instance labeling for weakly supervised object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6064–6072 (2019)
Lv, P., Hu, S., Hao, T.: Contrastive proposal extension with LSTM network for weakly supervised object detection. IEEE Trans. Image Process. 31, 6879–6892 (2022)
Oord, A.v.d., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018)
Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural Inform. Process. Syst. 28 (2015)
Ren, Z., et al..: Instance-aware, context-focused, and memory-efficient weakly supervised object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10598–10607 (2020)
Seo, J., Bae, W., Sutherland, D.J., Noh, J., Kim, D.: Object discovery via contrastive learning for weakly supervised object detection. In: Computer Vision-ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXXI. pp. 312–329. Springer (2022). https://doi.org/10.1007/978-3-031-19821-2_18
Shen, Y., Ji, R., Chen, Z., Wu, Y., Huang, F.: Uwsod: toward fully-supervised-level capacity weakly supervised object detection. Adv. Neural. Inf. Process. Syst. 33, 7005–7019 (2020)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Sui, L., Zhang, C.L., Wu, J.: Salvage of supervision in weakly supervised object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14227–14236 (2022)
Tang, P., et al.: PCL: Proposal cluster learning for weakly supervised object detection. IEEE Trans. Pattern Anal. Mach. Intell. 42(1), 176–191 (2018)
Tang, P., Wang, X., Bai, X., Liu, W.: Multiple instance detection network with online instance classifier refinement. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2843–2851 (2017)
Tian, Y., Krishnan, D., Isola, P.: Contrastive multiview coding. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 776–794. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_45
Uijlings, J.R.R., van de Sande, K.E.A., Gevers, T., Smeulders, A.W.M.: Selective search for object recognition. Int. J. Comput. Vision 104, 154–171 (2013)
Wan, F., Liu, C., Ke, W., Ji, X., Jiao, J., Ye, Q.: C-mil: Continuation multiple instance learning for weakly supervised object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2199–2208 (2019)
Wan, F., Wei, P., Jiao, J., Han, Z., Ye, Q.: Min-entropy latent model for weakly supervised object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1297–1306 (2018)
Wang, G., Zhang, X., Peng, Z., Tang, X., Zhou, H., Jiao, L.: Absolute wrong makes better: Boosting weakly supervised object detection via negative deterministic information. arXiv preprint arXiv:2204.10068 (2022)
Yang, K., Li, D., Dou, Y.: Towards precise end-to-end weakly supervised object detection network. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8372–8381 (2019)
Yin, Y., Deng, J., Zhou, W., Li, H.: Instance mining with class feature banks for weakly supervised object detection. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 35, pp. 3190–3198 (2021)
Zeng, Z., Liu, B., Fu, J., Chao, H., Zhang, L.: Wsod2: Learning bottom-up and top-down objectness distillation for weakly-supervised object detection. In: Proceedings of the IEEE/CVF International Conference On Computer Vision, pp. 8292–8300 (2019)
Zhang, D., Zeng, W., Yao, J., Han, J.: Weakly supervised object detection using proposal-and semantic-level relationships. IEEE Trans. Pattern Anal. Mach. Intell. 44(6), 3349–3363 (2020)
Zhong, Y., Wang, J., Peng, J., Zhang, L.: Boosting weakly supervised object detection with progressive knowledge transfer. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12371, pp. 615–631. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58574-7_37
Acknowledgements
This work was supported by the National Key R &D Program of China (2021ZD0109800), the National Natural Science Foundation of China (81972248) and BUPT innovation and entrepreneurship support program 2023-YC-A185.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Ethical Statement
This research was conducted in accordance with ethical guidelines and regulations. The paper aims to contribute to knowledge while upholding ethical standards.
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zhang, Y., Zhu, C., Yang, G., Chen, S. (2023). Negative Prototypes Guided Contrastive Learning for Weakly Supervised Object Detection. In: Koutra, D., Plant, C., Gomez Rodriguez, M., Baralis, E., Bonchi, F. (eds) Machine Learning and Knowledge Discovery in Databases: Research Track. ECML PKDD 2023. Lecture Notes in Computer Science(), vol 14170. Springer, Cham. https://doi.org/10.1007/978-3-031-43415-0_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-43415-0_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43414-3
Online ISBN: 978-3-031-43415-0
eBook Packages: Computer ScienceComputer Science (R0)