[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Fusing Structural and Functional Connectivities Using Disentangled VAE for Detecting MCI

  • Conference paper
  • First Online:
Brain Informatics (BI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13974))

Included in the following conference series:

Abstract

Brain network analysis is a useful approach to studying human brain disorders because it can distinguish patients from healthy people by detecting abnormal connections. Due to the complementary information from multiple modal neuroimages, multimodal fusion technology has a lot of potential for improving prediction performance. However, effective fusion of multimodal medical images to achieve complementarity is still a challenging problem. In this paper, a novel hierarchical structural-functional connectivity fusing (HSCF) model is proposed to construct brain structural-functional connectivity matrices and predict abnormal brain connections based on functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI). Specifically, the prior knowledge is incorporated into the separators for disentangling each modality of information by the graph convolutional networks (GCN). And a disentangled cosine distance loss is devised to ensure the disentanglement’s effectiveness. Moreover, the hierarchical representation fusion module is designed to effectively maximize the combination of relevant and effective features between modalities, which makes the generated structural-functional connectivity more robust and discriminative in the cognitive disease analysis. Results from a wide range of tests performed on the public Alzheimer’s Disease Neuroimaging Initiative (ADNI) database show that the proposed model performs better than competing approaches in terms of classification evaluation. In general, the proposed HSCF model is a promising model for generating brain structural-functional connectivities and identifying abnormal brain connections as cognitive disease progresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 51.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tsentidou, G., Moraitou, D., Tsolaki, M.: Cognition in vascular aging and mild cognitive impairment. J. Alzheimers Dis. 72(1), 55–70 (2019)

    Article  Google Scholar 

  2. Davatzikos, C., Bhatt, P., Shaw, L.M., Batmanghelich, K.N., Trojanowski, J.Q.: Prediction of mci to ad conversion, via MRI, CSF biomarkers, and pattern classification. Neurobiol. Aging 32(12), 2322 (2011)

    Article  Google Scholar 

  3. Peres, M.A., et al.: Oral diseases: a global public health challenge. Lancet 394(10194), 249–260 (2019)

    Article  Google Scholar 

  4. Keren-Shaul, H., et al.: A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169(7), 1276–1290 (2017)

    Article  Google Scholar 

  5. Wang, S.-Q., Li, X., Cui, J.-L., Li, H.-X., Luk, K.D., Hu, Y.: Prediction of myelopathic level in cervical spondylotic myelopathy using diffusion tensor imaging. J. Magn. Reson. Imaging 41(6), 1682–1688 (2015)

    Article  Google Scholar 

  6. Shen, Y., Huang, X., Kwak, K.S., Yang, B., Wang, S.: Subcarrier-pairing-based resource optimization for OFDM wireless powered relay transmissions with time switching scheme. IEEE Trans. Signal Process. 65(5), 1130–1145 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gibson, E., et al.: NiftyNet: a deep-learning platform for medical imaging. Comput. Methods Programs Biomed. 158, 113–122 (2018)

    Article  Google Scholar 

  8. Wang, S., Shen, Y., Zeng, D., Hu, Y.: Bone age assessment using convolutional neural networks. In: 2018 International Conference on Artificial Intelligence and Big Data (ICAIBD), pp. 175–178. IEEE (2018)

    Google Scholar 

  9. Wang, S., et al.: Skeletal maturity recognition using a fully automated system with convolutional neural networks. IEEE Access 6, 29979–29993 (2018)

    Article  Google Scholar 

  10. Hong, J., et al.: Brain age prediction of children using routine brain MR images via deep learning. Front. Neurol. 11, 584682 (2020)

    Article  Google Scholar 

  11. Wang, S., et al.: An ensemble-based densely-connected deep learning system for assessment of skeletal maturity. IEEE Trans. Syst., Man, Cybern.: Syst. 52(1), 426–437 (2020)

    Article  Google Scholar 

  12. Hu, S., Yu, W., Chen, Z., Wang, S.: Medical image reconstruction using generative adversarial network for Alzheimer disease assessment with class-imbalance problem. In: 2020 IEEE 6th International Conference on Computer and Communications (ICCC), pp. 1323–1327. IEEE (2020)

    Google Scholar 

  13. Yu, W., Lei, B., Ng, M.K., Cheung, A.C., Shen, Y., Wang, S.: Tensorizing GAN with high-order pooling for Alzheimer’s disease assessment. IEEE Trans. Neural Netw. Learn. Syst. 33(9), 4945–4959 (2021)

    Article  Google Scholar 

  14. Zeng, D., Wang, S., Shen, Y., Shi, C.: A GA-based feature selection and parameter optimization for support tucker machine. Procedia Comput. Sci. 111, 17–23 (2017)

    Article  Google Scholar 

  15. Zuo, Q., Pun, C. M., Zhang, Y., Wang, H., Hong, J.: Multi-resolution spatiotemporal enhanced transformer denoising with functional diffusive gans for constructing brain effective connectivity in MCI analysis. arXiv preprint: arXiv:2305.10754 (2023)

  16. Zuo, Q., Lei, B., Shen, Y., Liu, Y., Feng, Z., Wang, S.: Multimodal representations learning and adversarial hypergraph fusion for early Alzheimer’s disease prediction. In: Ma, H., et al. (eds.) PRCV 2021. LNCS, vol. 13021, pp. 479–490. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88010-1_40

    Chapter  Google Scholar 

  17. Wang, S., Shen, Y., Chen, W., Xiao, T., Hu, J.: Automatic recognition of mild cognitive impairment from MRI images using expedited convolutional neural networks. In: Lintas, A., Rovetta, S., Verschure, P.F.M.J., Villa, A.E.P. (eds.) ICANN 2017. LNCS, vol. 10613, pp. 373–380. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68600-4_43

    Chapter  Google Scholar 

  18. Wang, S., Hu, Y., Shen, Y., Li, H.: Classification of diffusion tensor metrics for the diagnosis of a myelopathic cord using machine learning. Int. J. Neural Syst. 28(02), 1750036 (2018)

    Article  Google Scholar 

  19. Hong, J., Yu, S.C.-H., Chen, W.: Unsupervised domain adaptation for cross-modality liver segmentation via joint adversarial learning and self-learning. Appl. Soft Comput. 121, 108729 (2022)

    Article  Google Scholar 

  20. Lei, B., et al.: Predicting clinical scores for Alzheimer’s disease based on joint and deep learning. Expert Syst. Appl. 187, 115966 (2022)

    Article  Google Scholar 

  21. Hirjak, D., et al.: Multimodal magnetic resonance imaging data fusion reveals distinct patterns of abnormal brain structure and function in catatonia. Schizophr. Bull. 46(1), 202–210 (2020)

    Article  Google Scholar 

  22. Zuo, Q., et al.: Brain functional network generation using distribution-regularized adversarial graph autoencoder with transformer for dementia diagnosis (2023)

    Google Scholar 

  23. Honey, C.J., et al.: Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl. Acad. Sci. 106(6), 2035–2040 (2009)

    Article  Google Scholar 

  24. Zuo, Q., et al.: Hemisphere-separated cross-connectome aggregating learning via VAE-GAN for brain structural connectivity synthesis. IEEE Access 11, 48493–48505 (2023)

    Article  Google Scholar 

  25. Wang, S., Wang, H., Shen, Y., Wang, X.: Automatic recognition of mild cognitive impairment and Alzheimers disease using ensemble based 3D densely connected convolutional networks. In: 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 517–523. IEEE (2018)

    Google Scholar 

  26. Hu, S., Yuan, J., Wang, S.: Cross-modality synthesis from MRI to PET using adversarial U-net with different normalization. In: 2019 International Conference on Medical Imaging Physics and Engineering (ICMIPE), pp. 1–5. IEEE (2019)

    Google Scholar 

  27. Wang, S., Wang, H., Cheung, A.C., Shen, Y., Gan, M.: Ensemble of 3D densely connected convolutional network for diagnosis of mild cognitive impairment and Alzheimer’s disease. In: Wani, M.A., Kantardzic, M., Sayed-Mouchaweh, M. (eds.) Deep Learning Applications. AISC, vol. 1098, pp. 53–73. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-1816-4_4

    Chapter  Google Scholar 

  28. Hu, S., Lei, B., Wang, S., Wang, Y., Feng, Z., Shen, Y.: Bidirectional mapping generative adversarial networks for brain MR to pet synthesis. IEEE Trans. Med. Imaging 41(1), 145–157 (2021)

    Article  Google Scholar 

  29. Yu, W., et al.: Morphological feature visualization of Alzheimer’s disease via multidirectional perception GAN. IEEE Trans. Neural Netw. Learn. Syst. (2022)

    Google Scholar 

  30. You, S. et al.: Fine perceptive GANs for brain MR image super-resolution in wavelet domain. IEEE Trans. Neural Netw. Learn. Syst. (2022)

    Google Scholar 

  31. Lei, B., et al.: Diagnosis of early Alzheimer’s disease based on dynamic high order networks. Brain Imaging Behav. 15, 276–287 (2021)

    Article  Google Scholar 

  32. Zuo, Q., Lei, B., Zhong, N., Pan, Y., Wang, S.: Brain structure-function fusing representation learning using adversarial decomposed-VAE for analyzing MCI. arXiv preprint: arXiv:2305.14404 (2023)

  33. Zuo, Q., Lu, L., Wang, L., Zuo, J., Ouyang, T.: Constructing brain functional network by adversarial temporal-spatial aligned transformer for early AD analysis. Front. Neurosci. 16, 1087176 (2022)

    Article  Google Scholar 

  34. Zuo, Q., Lei, B., Wang, S., Liu, Y., Wang, B., Shen, Y.: A prior guided adversarial representation learning and hypergraph perceptual network for predicting abnormal connections of Alzheimer’s disease. arXiv preprint: arXiv:2110.09302 (2021)

  35. Zong, Y., Jing, C., Zuo, Q.: Multiscale autoencoder with structural-functional attention network for Alzheimer’s disease prediction. In: Yu, S., et al. (eds.) PRCV 2022. Lecture Notes in Computer Science, vol. 13535, pp. 286–297. Springer, Cham (2022)

    Chapter  Google Scholar 

  36. Hong, J., Zhang, Y.-D., Chen, W.: Source-free unsupervised domain adaptation for cross-modality abdominal multi-organ segmentation. Knowl.-Based Syst. 250, 109155 (2022)

    Article  Google Scholar 

  37. Yu, S., et al.: Multi-scale enhanced graph convolutional network for early mild cognitive impairment detection. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12267, pp. 228–237. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_23

    Chapter  Google Scholar 

  38. Hu, S., Shen, Y., Wang, S., Lei, B.: Brain MR to PET synthesis via bidirectional generative adversarial network. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 698–707. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_67

    Chapter  Google Scholar 

  39. Liu, L., Wang, Y.-P., Wang, Y., Zhang, P., Xiong, S.: An enhanced multi-modal brain graph network for classifying neuropsychiatric disorders. Med. Image Anal. 81, 102550 (2022)

    Article  Google Scholar 

  40. Zhang, L., et al.: Deep fusion of brain structure-function in mild cognitive impairment. Med. Image Anal. 72, 102082 (2021)

    Article  Google Scholar 

  41. Wang, S.-Q.: A variational approach to nonlinear two-point boundary value problems. Comput. Math. Appl. 58(11–12), 2452–2455 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. Mo, L.-F., Wang, S.-Q.: A variational approach to nonlinear two-point boundary value problems. Nonlinear Anal. Theory Methods Appl. 71(12), e834–e838 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  43. Kingma, D.P., et al.: An introduction to variational autoencoders. Found. Trends® Mach. Learn. 12(4), 307–392 (2019)

    Google Scholar 

  44. Atwood, J., Towsley, D.: Diffusion-convolutional neural networks. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  45. Zhang, X., He, L., Chen, K., Luo, Y., Zhou, J., Wang, F.: Multi-view graph convolutional network and its applications on neuroimage analysis for Parkinson’s disease. In: AMIA Annual Symposium Proceedings, vol. 2018, p. 1147. American Medical Informatics Association (2018)

    Google Scholar 

  46. Lei, B., et al.: Self-calibrated brain network estimation and joint non-convex multi-task learning for identification of early Alzheimer’s disease. Med. Image Anal. 61, 101652 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Guangdong Social Science Planning Project under Grant GD21YWW01, in part by the Special Fund for Young Teachers in Basic Scientific Research Business Expenses of Central Universities under Grant 2023qntd28, in part by the Young Doctoral Research Start-Up Fund of Hubei University of Economics under Grant XJ22BS28.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanfei Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zuo, Q., Zhu, Y., Lu, L., Yang, Z., Li, Y., Zhang, N. (2023). Fusing Structural and Functional Connectivities Using Disentangled VAE for Detecting MCI. In: Liu, F., Zhang, Y., Kuai, H., Stephen, E.P., Wang, H. (eds) Brain Informatics. BI 2023. Lecture Notes in Computer Science(), vol 13974. Springer, Cham. https://doi.org/10.1007/978-3-031-43075-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43075-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43074-9

  • Online ISBN: 978-3-031-43075-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics