Abstract
Spatiotemporal data analysis is crucial for various fields of applications, such as transportation, healthcare, and meteorology. Spatiotemporal data collected in the real world often contain missing values due to sensor failures or transmission loss. Therefore, spatiotemporal imputation aims to fill in the missing values by leveraging the underlying spatial and temporal dependencies in the partially observed data. Previous models for spatiotemporal imputation focus solely on the imputation task as a preparatory step for solving the downstream tasks. Instead, we aim to use downstream tasks to reinforce spatiotemporal imputation and further propose a multi-task learning framework, MTSTI, for spatiotemporal imputation. Our proposed framework utilizes a graph neural network to learn spatiotemporal representations via message-passing. The multi-task learning structure, combining spatiotemporal imputation with the forecasting task, provides additional insights that enhance the model’s performance and generality. Our empirical results demonstrate that our proposed framework outperforms state-of-the-art methods in the imputation task on various real-world datasets across different fields.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Acuna, E., Rodriguez, C.: The treatment of missing values and its effect on classifier accuracy. In: Banks, D., McMorris, F.R., Arabie, P., Gaul, W. (eds.) Classification, Clustering, and Data Mining Applications. Studies in Classification, Data Analysis, and Knowledge Organisation, pp. 639–647. Springer, Berlin (2004). https://doi.org/10.1007/978-3-642-17103-1_60
Ansley, C.F., Kohn, R.: On the estimation of ARIMA models with missing values. In: Parzen, E. (ed.) Time Series Analysis of Irregularly Observed Data. Lecture Notes in Statistics, vol. 25, pp. 9–37. Springer, New York (1984). https://doi.org/10.1007/978-1-4684-9403-7_2
Arumugam, P., Saranya, R.: Outlier detection and missing value in seasonal ARIMA model using rainfall data. Mater. Today: Proc. 5(1), 1791–1799 (2018)
Azur, M.J., Stuart, E.A., Frangakis, C., Leaf, P.J.: Multiple imputation by chained equations: what is it and how does it work? Int. J. Methods Psychiatr. Res. 20(1), 40–49 (2011)
Bauer, P., Thorpe, A., Brunet, G.: The quiet revolution of numerical weather prediction. Nature 525(7567), 47–55 (2015)
Blázquez-García, A., Conde, A., Mori, U., Lozano, J.A.: A review on outlier/anomaly detection in time series data. ACM Comput. Surv. (CSUR) 54(3), 1–33 (2021)
Cao, W., Wang, D., Li, J., Zhou, H., Li, L., Li, Y.: BRITS: bidirectional recurrent imputation for time series. In: Advances in Neural Information Processing Systems, vol. 31 (2018)
Che, Z., Purushotham, S., Cho, K., Sontag, D., Liu, Y.: Recurrent neural networks for multivariate time series with missing values. Sci. Rep. 8(1), 1–12 (2018)
Chen, X., Sun, L.: Bayesian temporal factorization for multidimensional time series prediction. IEEE Trans. Pattern Anal. Mach. Intell. 44(9), 4659–4673 (2021)
Chen, Y., Li, Z., Yang, C., Wang, X., Long, G., Xu, G.: Adaptive graph recurrent network for multivariate time series imputation. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds.) Neural Information Processing. Communications in Computer and Information Science, vol. 1792, pp. 64–73. Springer, Singapore (2022). https://doi.org/10.1007/978-981-99-1642-9_6
Chen, Z., Jiaze, E., Zhang, X., Sheng, H., Cheng, X.: Multi-task time series forecasting with shared attention. In: 2020 International Conference on Data Mining Workshops (ICDMW), pp. 917–925. IEEE (2020)
Cini, A., Marisca, I., Alippi, C.: Filling the gaps: multivariate time series imputation by graph neural networks. arXiv preprint: arXiv:2108.00298 (2021)
Han, Z., Zhao, J., Leung, H., Ma, K.F., Wang, W.: A review of deep learning models for time series prediction. IEEE Sens. J. 21(6), 7833–7848 (2019)
Hastie, T., Tibshirani, R., Friedman, J.H., Friedman, J.H.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, vol. 2. Springer, Cham (2009)
Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L., Muller, P.A.: Deep learning for time series classification: a review. Data Min. Knowl. Disc. 33(4), 917–963 (2019)
Jawed, S., Grabocka, J., Schmidt-Thieme, L.: Self-supervised learning for semi-supervised time series classification. In: Lauw, H.W., Wong, R.C.-W., Ntoulas, A., Lim, E.-P., Ng, S.-K., Pan, S.J. (eds.) PAKDD 2020. LNCS (LNAI), vol. 12084, pp. 499–511. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-47426-3_39
Kaushik, S., et al.: Ai in healthcare: time-series forecasting using statistical, neural, and ensemble architectures. Front. Big Data 3, 4 (2020)
Kreindler, D.M., Lumsden, C.J.: The effects of the irregular sample and missing data in time series analysis. In: Nonlinear Dynamics, Psychology, and Life Sciences (2006)
Li, Y., Yu, R., Shahabi, C., Liu, Y.: Diffusion convolutional recurrent neural network: data-driven traffic forecasting. arXiv preprint: arXiv:1707.01926 (2017)
Liu, Y., Yu, R., Zheng, S., Zhan, E., Yue, Y.: NAOMI: non-autoregressive multiresolution sequence imputation. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
Ma, T., Tan, Y.: Multiple stock time series jointly forecasting with multi-task learning. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2020)
Miao, X., Wu, Y., Wang, J., Gao, Y., Mao, X., Yin, J.: Generative semi-supervised learning for multivariate time series imputation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 8983–8991 (2021)
Oehmcke, S., Zielinski, O., Kramer, O.: kNN ensembles with penalized DTW for multivariate time series imputation. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 2774–2781. IEEE (2016)
Salakhutdinov, R., Mnih, A.: Bayesian probabilistic matrix factorization using Markov chain monte Carlo. In: Proceedings of the 25th International Conference on Machine Learning, pp. 880–887 (2008)
Shang, C., Chen, J., Bi, J.: Discrete graph structure learning for forecasting multiple time series. arXiv preprint: arXiv:2101.06861 (2021)
Shumway, R.H., Stoffer, D.S.: An approach to time series smoothing and forecasting using the EM algorithm. J. Time Ser. Anal. 3(4), 253–264 (1982)
Stein, M.L.: Interpolation of Spatial Data: Some Theory for Kriging. Springer, Cham (1999)
White, I.R., Royston, P., Wood, A.M.: Multiple imputation using chained equations: issues and guidance for practice. Stat. Med. 30(4), 377–399 (2011)
Wu, Z., Pan, S., Long, G., Jiang, J., Chang, X., Zhang, C.: Connecting the dots: Multivariate time series forecasting with graph neural networks. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 753–763 (2020)
Wu, Z., Pan, S., Long, G., Jiang, J., Zhang, C.: Graph WaveNet for deep spatial-temporal graph modeling. arXiv preprint: arXiv:1906.00121 (2019)
Yi, X., Zheng, Y., Zhang, J., Li, T.: ST-MVL: filling missing values in geo-sensory time series data. In: Proceedings of the 25th International Joint Conference on Artificial Intelligence, IJCAI 2016, pp. 2704–2710 (2016)
Yoon, J., Jordon, J., Schaar, M.: Gain: missing data imputation using generative adversarial nets. In: International Conference on Machine Learning, pp. 5689–5698. PMLR (2018)
Yu, H., et al.: Regularized graph structure learning with semantic knowledge for multi-variates time-series forecasting. arXiv preprint: arXiv:2210.06126 (2022)
Yu, H.F., Rao, N., Dhillon, I.S.: Temporal regularized matrix factorization for high-dimensional time series prediction. In: Advances in Neural Information Processing Systems, vol. 29 (2016)
Yu, P., Yan, X.: Stock price prediction based on deep neural networks. Neural Comput. Appl. 32, 1609–1628 (2020)
Zhang, Y., Zhou, B., Cai, X., Guo, W., Ding, X., Yuan, X.: Missing value imputation in multivariate time series with end-to-end generative adversarial networks. Inf. Sci. 551, 67–82 (2021)
Zheng, Y., Capra, L., Wolfson, O., Yang, H.: Urban computing: concepts, methodologies, and applications. ACM Transa. Intell. Syst. Technol. (TIST) 5(3), 1–55 (2014)
Zivot, E., Wang, J.: Vector autoregressive models for multivariate time series. In: Zivot, E., Wang, J. (eds.) Modeling Financial Time Series with S-PLUS®, pp. 385–429. Springer, New York (2006). https://doi.org/10.1007/978-0-387-32348-0_11
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Chen, Y., Shi, K., Wang, X., Xu, G. (2023). MTSTI: A Multi-task Learning Framework for Spatiotemporal Imputation. In: Yang, X., et al. Advanced Data Mining and Applications. ADMA 2023. Lecture Notes in Computer Science(), vol 14180. Springer, Cham. https://doi.org/10.1007/978-3-031-46677-9_13
Download citation
DOI: https://doi.org/10.1007/978-3-031-46677-9_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-46676-2
Online ISBN: 978-3-031-46677-9
eBook Packages: Computer ScienceComputer Science (R0)