Abstract
In the field of robotics, most perception methods rely on depth information captured by RGB-D cameras. However, the ability of depth sensors to capture depth information is hindered by the reflection and refraction of light on transparent objects. Existing methods of completing transparent objects’ depth information are usually impractical due to the need for fixtures or unacceptably slow inference speeds. To address this challenge, we propose an efficient multi-stage architecture called UDCGN. This method progressively learns completion functions from sparse inputs by dividing the overall recovery process into more manageable steps. To enhance the interaction between different branches, Cross-Guided Fusion Block (CGFB) is introduced into each stage. The CGFB dynamically generates convolution kernel parameters from guided features and convolutes them with input features. Furthermore, the Adaptive Uncertainty-Driven Loss Function (AUDL) is developed to handle the uncertainty issue of sparse depth. It optimizes pixels with high uncertainty by adapting different distributions. Comprehensive experiments on representative datasets demonstrate that UDCGN significantly outperforms state-of-the-art methods in terms of both performance and efficiency.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Häne, C., et al.: 3D visual perception for self-driving cars using a multi-camera system: calibration, mapping, localization, and obstacle detection. IVC 68, 14–27 (2017)
Ma, F., Carlone, L., Ayaz, U., Karaman, S.: Sparse depth sensing for resource-constrained robots. IJRR 38, 935–980 (2019)
Sajjan, S., et al.: Clear grasp: 3D shape estimation of transparent objects for manipulation. In: ICRA (2020)
Phillips, C.J., Lecce, M., Daniilidis, K.: Seeing glassware: from edge detection to pose estimation and shape recovery. In: RSS (2016)
Qian, Y., Gong, M., Yang, Y.H.: 3D reconstruction of transparent objects with position-normal consistency. In: CVPR (2016)
Zhu, L., et al.: RGB-D local implicit function for depth completion of transparent objects. In: CVPR (2021)
Ma, F., Karaman, S.: Sparse-to-dense: depth prediction from sparse depth samples and a single image. In: ICRA (2018)
Hu, M., Wang, S., Li, B., Ning, S., Fan, L., Gong, X.: PENet: towards precise and efficient image guided depth completion. In: ICRA (2021)
Tang, J., Tian, F.P., Feng, W., Li, J., Tan, P.: Learning guided convolutional network for depth completion. TIP 30, 1116–1129 (2020)
Qiu, J., et al.: DeepLiDAR: deep surface normal guided depth prediction for outdoor scene from sparse lidar data and single color image. In: CVPR (2019)
Uhrig, J., Schneider, N., Schneider, L., Franke, U., Brox, T., Geiger, A.: Sparsity invariant CNNs. In: 3DV (2017)
Chodosh, N., Wang, C., Lucey, S.: Deep convolutional compressed sensing for LiDAR depth completion. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11361, pp. 499–513. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20887-5_31
Eldesokey, A., Felsberg, M., Holmquist, K., Persson, M.: Uncertainty-aware CNNs for depth completion: uncertainty from beginning to end. In: CVPR (2020)
Dimitrievski, M., Veelaert, P., Philips, W.: Learning morphological operators for depth completion. In: Blanc-Talon, J., Helbert, D., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2018. LNCS, vol. 11182, pp. 450–461. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01449-0_38
Senushkin, D., Romanov, M., Belikov, I., Patakin, N., Konushin, A.: Decoder modulation for indoor depth completion. In: IROS (2021)
Imran, S., Long, Y., Liu, X., Morris, D.: Depth coefficients for depth completion. In: CVPR (2019)
Ma, F., Cavalheiro, G.V., Karaman, S.: Self-supervised sparse-to-dense: self-supervised depth completion from lidar and monocular camera. In: ICRA (2019)
Jaritz, M., De Charette, R., Wirbel, E., Perrotton, X., Nashashibi, F.: Sparse and dense data with CNNs: depth completion and semantic segmentation. In: 3DV (2018)
Zhang, Y., Wei, P., Li, H., Zheng, N.: Multiscale adaptation fusion networks for depth completion. In: IJCNN (2020)
Yan, Z., et al.: RigNet: repetitive image guided network for depth completion. arXiv:2107.13802 (2021)
Lin, X., Ma, L., Liu, W., Chang, S.-F.: Context-gated convolution. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12363, pp. 701–718. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58523-5_41
Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? NeurIPS 30 (2017)
Zhu, Y., Dong, W., Li, L., Wu, J., Li, X., Shi, G.: Robust depth completion with uncertainty-driven loss functions. In: AAAI (2022)
Ning, Q., Dong, W., Li, X., Wu, J., Shi, G.: Uncertainty-driven loss for single image super-resolution. NeurIPS 34, 16398–16409 (2021)
Gu, Y., Jin, Z., Chiu, S.C.: Active learning combining uncertainty and diversity for multi-class image classification. IET-CVI 9, 400–407 (2015)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR (2018)
Figueiredo, M.: Adaptive sparseness using Jeffreys prior. NeurIPS 14, 722 (2001)
Acknowledgement
This work is supported by the Key Research and Development Program of Zhejiang Province (No. 2023C01168) and the Foundation of Zhejiang University City College (No. J202316).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Hu, Y., Wang, Z., Chen, J., Qian, Y., Wang, W. (2023). UDCGN: Uncertainty-Driven Cross-Guided Network for Depth Completion of Transparent Objects. In: Iliadis, L., Papaleonidas, A., Angelov, P., Jayne, C. (eds) Artificial Neural Networks and Machine Learning – ICANN 2023. ICANN 2023. Lecture Notes in Computer Science, vol 14262. Springer, Cham. https://doi.org/10.1007/978-3-031-44201-8_39
Download citation
DOI: https://doi.org/10.1007/978-3-031-44201-8_39
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-44200-1
Online ISBN: 978-3-031-44201-8
eBook Packages: Computer ScienceComputer Science (R0)