Abstract
Privacy protection is a main goal in the majority of the Blockchain studies. However some dishonest users may abuse from the benefits of this property and the fact of not being identified to do illegal crimes. That is why several researches focus on implementing identity tracing to avoid the flaws related to privacy protection in Blockchain applications.
In this paper, we propose a Distributed Multi-Key Generation (DMKG) protocol without private channels built on the DMKG protocol of the Blockchain Traceable Scheme with Oversight Function (BTSOF) presented in [8].
Our protocol introduces a new strategy to manage complaints between participants that avoids them to publicly reveal the values of their shares of secrets. This new management of complaints and the use of public channels allow a precise identification of malicious participants. We prove that our solution satisfies the security requirements of the Verifiable Multi-Secret Sharing (VMSS) schemes and DMKG protocols.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Biswas, A.K., Dasgupta, M., Ray, S., Khan, M.K.: A probable cheating-free (t, n) threshold secret sharing scheme with enhanced blockchain. Comput. Electr. Eng. 100, 107925 (2022)
Blakley, G.R.: Safeguarding cryptographic keys. In: Managing Requirements Knowledge, International Workshop on, pp. 313–313. IEEE Computer Society (1979)
Canetti, R., Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Adaptive security for threshold cryptosystems. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 98–116. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_7
Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055717
Franklin, M., Yung, M.: Communication complexity of secure computation. In: Proceedings of the 24th Annual ACM Symposium on Theory of Computing, pp. 699–710 (1992)
Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key generation for discrete-log based cryptosystems. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 295–310. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_21
Kiamari, N., Hadian, M., Mashhadi, S.: Non-interactive verifiable LWE-based multi secret sharing scheme. Multimedia Tools Appl. pp. 1–13 (2022). https://doi.org/10.1007/s11042-022-13347-4
Ma, T., Xu, H., Li, P.: A blockchain traceable scheme with oversight function. In: Meng, W., Gollmann, D., Jensen, C.D., Zhou, J. (eds.) ICICS 2020. LNCS, vol. 12282, pp. 164–182. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61078-4_10
Ma, T., Xu, H., Li, P.: Skyeye: a traceable scheme for blockchain. Cryptology ePrint Archive (2020)
Ma, T., Xu, H., Li, P.: A traceable scheme for consortium blockchain. In: 2021 IEEE 9th International Conference on Smart City and Informatization (ISCI), pp. 39–46. IEEE (2021)
Neji, W., Blibech, K., Ben Rajeb, N.: Distributed key generation protocol with a new complaint management strategy. Secur. Commun. Netw. 9(17), 4585–4595 (2016)
Pakniat, N., Noroozi, M., Eslami, Z.: Distributed key generation protocol with hierarchical threshold access structure. IET Inf. Secur. 9(4), 248–255 (2015)
Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_9
Pedersen, T.P.: A threshold cryptosystem without a trusted party. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 522–526. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6_47
Schindler, P., Judmayer, A., Stifter, N., Weippl, E.: Distributed key generation with ethereum smart contracts. In: CIW’19: Cryptocurrency Implementers’ Workshop (2019)
Shalini, I., Sathyanarayana, S., et al.: A comparative analysis of secret sharing schemes with special reference to e-commerce applications. In: 2015 International Conference on Emerging Research in Electronics, Computer Science and Technology (ICERECT), pp. 17–22. IEEE (2015)
Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
Shil, A.B., Blibech, K., Robbana, R., Neji, W.: A new pvss scheme with a simple encryption function. arXiv preprint arXiv:1307.8209 (2013)
Yang, C.C., Chang, T.Y., Hwang, M.S.: A (t, n) multi-secret sharing scheme. Appl. Math. Comput. 151(2), 483–490 (2004)
Zhou, X.: Threshold cryptosystem based fair off-line e-cash. In: 2008 2nd International Symposium on Intelligent Information Technology Application, vol. 3, pp. 692–696. IEEE (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Kalai, R., Neji, W., Ben Rajeb, N. (2023). A Distributed Multi-key Generation Protocol with a New Complaint Management Strategy. In: Papadaki, M., Rupino da Cunha, P., Themistocleous, M., Christodoulou, K. (eds) Information Systems. EMCIS 2022. Lecture Notes in Business Information Processing, vol 464. Springer, Cham. https://doi.org/10.1007/978-3-031-30694-5_12
Download citation
DOI: https://doi.org/10.1007/978-3-031-30694-5_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-30693-8
Online ISBN: 978-3-031-30694-5
eBook Packages: Computer ScienceComputer Science (R0)