Abstract
Large-scale multi-objective optimization problems (LSMOPs) can lead to the conventional reproduction operator being inefficient for searching. Therefore, we propose a large-scale multi-objective brain storm optimization algorithm based on direction vectors and variance analysis (LMOBSO-DV) to enhance the efficiency of tackling LSMOPs. Specifically, we adopt brain storm optimization (BSO) algorithm using reference vectors to divide the population into subpopulations and guide the individuals i) in each subpopulation to search in promising directions and 2) between subpopulations to maintain diversity. We also design a new mutation operator. On a widely used LSMOPs test suites with 1000 decision variables, 2 objectives, and 3 objectives, we evaluate LMOBSO-DV’s effectiveness in comparison to other several state-of-the-art algorithms. The results of the experiment show that our proposed approach, LMOBSO-DV, outperforms the other studied algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Abdi, Y., Feizi-Derakhshi, M.R.: Hybrid multi-objective evolutionary algorithm based on search manager framework for big data optimization problems. Appl. Soft Comput. 87, 105991 (2020)
Antonio, L.M., Coello, C.A.C.: Use of cooperative coevolution for solving large scale multiobjective optimization problems. In: 2013 IEEE Congress on Evolutionary Computation, pp. 2758–2765. IEEE (2013)
Chen, H., Zhu, Y., Hu, K., Ma, L.: Bacterial colony foraging algorithm: combining chemotaxis, cell-to-cell communication, and self-adaptive strategy. Inf. Sci. 273, 73–100 (2014)
Cheng, R., Jin, Y., Narukawa, K., Sendhoff, B.: A multiobjective evolutionary algorithm using gaussian process-based inverse modeling. IEEE Trans. Evol. Comput. 19(6), 838–856 (2015)
Cheng, R., Jin, Y., Olhofer, M., Sendhoff, B.: A reference vector guided evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 20(5), 773–791 (2016)
Cheng, R., Jin, Y., Olhofer, M., et al.: Test problems for large-scale multiobjective and many-objective optimization. IEEE Trans. Cybern. 47(12), 4108–4121 (2016)
Cheng, S., Qin, Q., Chen, J., Shi, Y.: Brain storm optimization algorithm: a review. Artif. Intell. Rev. 46(4), 445–458 (2016). https://doi.org/10.1007/s10462-016-9471-0
He, C., Cheng, R., Tian, Y., Zhang, X.: Iterated problem reformulation for evolutionary large-scale multiobjective optimization. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2020)
He, C., Cheng, R., Yazdani, D.: Adaptive offspring generation for evolutionary large-scale multiobjective optimization. IEEE Trans. Syst. Man Cybern. Syst. 52(2), 786–798 (2020)
He, C., Huang, S., Cheng, R., Tan, K.C., Jin, Y.: Evolutionary multiobjective optimization driven by generative adversarial networks (GANs). IEEE Trans. Cybern. 51(6), 3129–3142 (2020)
He, C., et al.: Accelerating large-scale multiobjective optimization via problem reformulation. IEEE Trans. Evol. Comput. 23(6), 949–961 (2019)
Hong, W.J., Yang, P., Tang, K.: Evolutionary computation for large-scale multi-objective optimization: a decade of progresses. Int. J. Autom. Comput. 18(2), 155–169 (2021)
Li, M., Wei, J.: A cooperative co-evolutionary algorithm for large-scale multi-objective optimization problems. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 1716–1721 (2018)
Li, N., Ma, L., Yu, G., Xue, B., Zhang, M., Jin, Y.: Survey on evolutionary deep learning: Principles, algorithms, applications and open issues. arXiv preprint arXiv:2208.10658 (2022)
Liu, R., Liu, J., Li, Y., Liu, J.: A random dynamic grouping based weight optimization framework for large-scale multi-objective optimization problems. Swarm Evol. Comput. 55, 100684 (2020)
Liu, R., Ren, R., Liu, J., Liu, J.: A clustering and dimensionality reduction based evolutionary algorithm for large-scale multi-objective problems. Appl. Soft Comput. 89, 106120 (2020)
Liu, S., Lin, Q., Wong, K.C., Li, Q., Tan, K.C.: Evolutionary large-scale multiobjective optimization: Benchmarks and algorithms. IEEE Trans. Evol. Comput. (2021)
Ma, L., Cheng, S., Shi, Y.: Enhancing learning efficiency of brain storm optimization via orthogonal learning design. IEEE Trans. Syst. Man Cybern. Syst. 51(11), 6723–6742 (2020)
Ma, L., Hu, K., Zhu, Y., Niu, B., Chen, H., He, M.: Discrete and continuous optimization based on hierarchical artificial bee colony optimizer. J. Appl. Math. 2014 (2014)
Ma, L., Huang, M., Yang, S., Wang, R., Wang, X.: An adaptive localized decision variable analysis approach to large-scale multiobjective and many-objective optimization. IEEE Trans. Cybern. 52(7), 6684–6696 (2021)
Ma, L., et al.: Learning to optimize: reference vector reinforcement learning adaption to constrained many-objective optimization of industrial copper burdening system. IEEE Trans. Cybern. (2021)
Ma, L., Wang, X., Huang, M., Lin, Z., Tian, L., Chen, H.: Two-level master-slave RFID networks planning via hybrid multiobjective artificial bee colony optimizer. IEEE Trans. Syst. Man Cybern. Syst. 49(5), 861–880 (2017)
Ma, L., Wang, X., Huang, M., Zhang, H., Chen, H.: A novel evolutionary root system growth algorithm for solving multi-objective optimization problems. Appl. Soft Comput. 57, 379–398 (2017)
Ma, X., et al.: A multiobjective evolutionary algorithm based on decision variable analyses for multiobjective optimization problems with large-scale variables. IEEE Trans. Evol. Comput. 20(2), 275–298 (2015)
Miguel Antonio, L., Coello Coello, C.A.: Decomposition-based approach for solving large scale multi-objective problems. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 525–534. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45823-6_49
Shi, Y.: Brain storm optimization algorithm. In: Tan, Y., Shi, Y., Chai, Y., Wang, G. (eds.) ICSI 2011. LNCS, vol. 6728, pp. 303–309. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21515-5_36
Shi, Y.: Brain storm optimization algorithm in objective space. In: 2015 IEEE Congress on Evolutionary Computation (CEC), pp. 1227–1234. IEEE (2015)
Shi, Y., Xue, J., Wu, Y.: Multi-objective optimization based on brain storm optimization algorithm. Int. J. Swarm Intell. Res. (IJSIR) 4(3), 1–21 (2013)
Song, A., Yang, Q., Chen, W.N., Zhang, J.: A random-based dynamic grouping strategy for large scale multi-objective optimization. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 468–475. IEEE (2016)
Tian, Y., Cheng, R., Zhang, X., Jin, Y.: Platemo: a matlab platform for evolutionary multi-objective optimization [educational forum]. IEEE Comput. Intell. Mag. 12(4), 73–87 (2017)
Tian, Y., Lu, C., Zhang, X., Tan, K.C., Jin, Y.: Solving large-scale multiobjective optimization problems with sparse optimal solutions via unsupervised neural networks. IEEE Trans. Cybern. 51(6), 3115–3128 (2020)
Tian, Y., et al.: Evolutionary large-scale multi-objective optimization: a survey. ACM Comput. Surv. (CSUR) 54(8), 1–34 (2021)
Tian, Y., Zheng, X., Zhang, X., Jin, Y.: Efficient large-scale multiobjective optimization based on a competitive swarm optimizer. IEEE Trans. Cybern. 50(8), 3696–3708 (2019)
Zeng, R., Su, M., Yu, R., Wang, X.: CD\(^2\): fine-grained 3D mesh reconstruction with twice chamfer distance. ACM Trans. Multimedia Comput. Commun. Appl. (2023). https://doi.org/10.1145/3582694
Zhang, B., Wang, X., Ma, L., Huang, M.: Optimal controller placement problem in internet-oriented software defined network. In: 2016 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), pp. 481–488. IEEE (2016)
Zhang, X., Tian, Y., Cheng, R., Jin, Y.: A decision variable clustering-based evolutionary algorithm for large-scale many-objective optimization. IEEE Trans. Evol. Comput. 22(1), 97–112 (2016)
Zhang, Y., Wang, G.G., Li, K., Yeh, W.C., Jian, M., Dong, J.: Enhancing MOEA/D with information feedback models for large-scale many-objective optimization. Inf. Sci. 522, 1–16 (2020)
Zille, H., Ishibuchi, H., Mostaghim, S., Nojima, Y.: Weighted optimization framework for large-scale multi-objective optimization. In: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion, pp. 83–84 (2016)
Zille, H., Ishibuchi, H., Mostaghim, S., Nojima, Y.: A framework for large-scale multiobjective optimization based on problem transformation. IEEE Trans. Evol. Comput. 22(2), 260–275 (2017)
Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Da Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)
Acknowledgments
This work was supported in part by the Fundamental Re-search Funds for the Central Universities No. N2117005, the Joint Funds of the Natural Science Foundation of Liaoning Province und Grant 2021-KF-11-01 and the Fundamental Research Funds for the Central Universities.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Liu, Y. et al. (2023). A Large-Scale Multi-objective Brain Storm Optimization Algorithm Based on Direction Vectors and Variance Analysis. In: Tan, Y., Shi, Y., Luo, W. (eds) Advances in Swarm Intelligence. ICSI 2023. Lecture Notes in Computer Science, vol 13968. Springer, Cham. https://doi.org/10.1007/978-3-031-36622-2_34
Download citation
DOI: https://doi.org/10.1007/978-3-031-36622-2_34
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-36621-5
Online ISBN: 978-3-031-36622-2
eBook Packages: Computer ScienceComputer Science (R0)