[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Technical Function Evaluation of Two Smart Wearables and Data Analysis Methods for Step Counts

  • Conference paper
  • First Online:
Augmented Cognition (HCII 2023)

Abstract

Smart wearable devices that capture physical activity data are increasingly used for health research and show potential for augmented cognition. These devices must be tested to understand their function before use in research and everyday life. However, there are few standards for the evaluation of step count comparisons between devices. We completed a technical function evaluation of two consumer-grade devices – Fitbit Versa 3 and generation 2 Oura Ring – against research-grade gold standard ActiGraph devices – wGT3X-BT and GT9X-Link. We compared data analysis methods to evaluate smart wearable physical activity data to inform development of standards and guidance for data analysis. Based on this effort, we suggest the use of Median Absolute Percent Difference along with Spearman’s Rho as a correlation measure and Bland-Altman plots to visualize the agreement. This combination of measures provides a multi-perspective view of step counts and can assist researchers in determining limitations and best uses for smart wearable devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 55.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Henriksen, A., et al.: Using fitness trackers and smartwatches to measure physical activity in research: analysis of consumer wrist-worn wearables. J. Med. Internet Res. 20, e9157 (2018). https://doi.org/10.2196/jmir.9157

    Article  Google Scholar 

  2. Puterman, E., Pauly, T., Ruissen, G., Nelson, B., Faulkner, G.: Move more, move better: a narrative review of wearable technologies and their application to precision health. Health Psychol. 40, 803–810 (2021). https://doi.org/10.1037/hea0001125

    Article  Google Scholar 

  3. Reeder, B., Cook, P.F., Meek, P.M., Ozkaynak, M.: Smart watch potential to support augmented cognition for health-related decision making. In: Schmorrow, D.D., Fidopiastis, C.M. (eds.) AC 2017. LNCS (LNAI), vol. 10284, pp. 372–382. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58628-1_29

    Chapter  Google Scholar 

  4. Chu, A.H.Y., et al.: Comparison of wrist-worn Fitbit Flex and waist-worn ActiGraph for measuring steps in free-living adults. PLoS ONE 12, e0172535 (2017). https://doi.org/10.1371/journal.pone.0172535

    Article  Google Scholar 

  5. Feehan, L.M., et al.: Accuracy of Fitbit devices: systematic review and narrative syntheses of quantitative data. JMIR Mhealth Uhealth 6, e10527 (2018). https://doi.org/10.2196/10527

    Article  Google Scholar 

  6. Evenson, K.R., Goto, M.M., Furberg, R.D.: Systematic review of the validity and reliability of consumer-wearable activity trackers. Int. J. Behav. Nutr. Phys. Act. 12, 159 (2015). https://doi.org/10.1186/s12966-015-0314-1

    Article  Google Scholar 

  7. Fitbit Official Site for Activity Trackers and More. https://www.fitbit.com/global/us/home

  8. Evenson, K.R., Spade, C.L.: Review of validity and reliability of Garmin activity trackers. J. Measur. Phys. Behav. 3, 170–185 (2020)

    Article  Google Scholar 

  9. Garmin International | Home. https://www.garmin.com/en-US/

  10. Bunn, J.A., Navalta, J.W., Fountaine, C.J., Reece, J.D.: Current state of commercial wearable technology in physical activity monitoring 2015–2017. Int. J. Exerc. Sci. 11, 503–515 (2018)

    Google Scholar 

  11. Bai, Y., Tompkins, C., Gell, N., Dione, D., Zhang, T., Byun, W.: Comprehensive comparison of Apple watch and Fitbit monitors in a free-living setting. PLoS ONE 16, e0251975 (2021). https://doi.org/10.1371/journal.pone.0251975

    Article  Google Scholar 

  12. Apple. https://www.apple.com/

  13. Nair, S., et al.: ROAMM: a software infrastructure for real-time monitoring of personal health (2016)

    Google Scholar 

  14. Mobile | TV | Home Electronics | Home Appliances. https://www.samsung.com/us/

  15. Labs, D.I.: WHOOP | Your Personal Digital Fitness and Health Coach. https://www.whoop.com/

  16. Open. Friendly. Community Driven. https://www.pine64.org/

  17. Oura Ring: Accurate Health Information Accessible to Everyone. https://ouraring.com

  18. Shin, G., et al.: Wearable activity trackers, accuracy, adoption, acceptance and health impact: a systematic literature review. J. Biomed. Inform. 93, 103153 (2019). https://doi.org/10.1016/j.jbi.2019.103153

    Article  Google Scholar 

  19. Connelly, K., et al.: Evaluation framework for selecting wearable activity monitors for research. mHealth 7 (2021). https://doi.org/10.21037/mhealth-19-253

  20. Reeder, B., David, A.: Health at hand: a systematic review of smart watch uses for health and wellness. J. Biomed. Inform. 63, 269–276 (2016). https://doi.org/10.1016/j.jbi.2016.09.001

    Article  Google Scholar 

  21. Fokkema, T., Kooiman, T.J.M., Krijnen, W.P., Van Der Schans, C.P., De Groot, M.: Reliability and validity of ten consumer activity trackers depend on walking speed. Med. Sci. Sports Exerc. 49, 793–800 (2017). https://doi.org/10.1249/MSS.0000000000001146

    Article  Google Scholar 

  22. Intelligence, I.: US smart wearables users (2021–2025). https://www.insiderintelligence.com/charts/smart-wearables-users/

  23. Glenn, L.M., Boyce, J.A.S.: At the Nexus: augmented cognition, health care, and the law. J. Cogn. Eng. Decis. Mak. 1, 363–373 (2007). https://doi.org/10.1518/155534307X255663

    Article  Google Scholar 

  24. Gorzelitz, J., Farber, C., Gangnon, R., Cadmus-Bertram, L.: Accuracy of wearable trackers for measuring moderate- to vigorous-intensity physical activity: a systematic review and meta-analysis. J. Measur. Phys. Behav. 3, 346–357 (2020)

    Article  Google Scholar 

  25. Reeder, B., et al.: Stepwise evaluation methodology for smart watch sensor function and usability. In: Schmorrow, D.D., Fidopiastis, C.M. (eds.) HCII 2021. LNCS (LNAI), vol. 12776, pp. 221–233. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78114-9_16

    Chapter  Google Scholar 

  26. Ferguson, T., Rowlands, A.V., Olds, T., Maher, C.: The validity of consumer-level, activity monitors in healthy adults worn in free-living conditions: a cross-sectional study. Int. J. Behav. Nutr. Phys. Act. 12, 42 (2015). https://doi.org/10.1186/s12966-015-0201-9

    Article  Google Scholar 

  27. Gaz, D.V., et al.: Determining the validity and accuracy of multiple activity-tracking devices in controlled and free-walking conditions. Am. J. Health Promot. 32, 1671–1678 (2018). https://doi.org/10.1177/0890117118763273

    Article  Google Scholar 

  28. Kooiman, T.J.M., Dontje, M.L., Sprenger, S.R., Krijnen, W.P., van der Schans, C.P., de Groot, M.: Reliability and validity of ten consumer activity trackers. BMC Sports Sci. Med. Rehabil. 7, 24 (2015). https://doi.org/10.1186/s13102-015-0018-5

    Article  Google Scholar 

  29. Hedayatrad, L., Stewart, T., Duncan, S.: Concurrent validity of ActiGraph GT3X+ and Axivity AX3 accelerometers for estimating physical activity and sedentary behavior. J. Measur. Phys. Behav. 4, 1–8 (2021)

    Article  Google Scholar 

  30. Karaca, A., Demirci, N., Yılmaz, V., Hazır Aytar, S., Can, S., Ünver, E.: Validation of the ActiGraph wGT3X-BT accelerometer for step counts at five different body locations in laboratory settings. Meas. Phys. Educ. Exerc. Sci. 26, 63–72 (2022). https://doi.org/10.1080/1091367X.2021.1948414

    Article  Google Scholar 

  31. O’Brien, C.M., Duda, J.L., Kitas, G.D., Veldhuijzen van Zanten, J.J.C.S., Metsios, G.S., Fenton, S.A.M.: Measurement of sedentary time and physical activity in rheumatoid arthritis: an ActiGraph and activPAL™ validation study. Rheumatol. Int. 40(9), 1509–1518 (2020). https://doi.org/10.1007/s00296-020-04608-2

    Article  Google Scholar 

  32. O’Brien, M.W., Wojcik, W.R., Fowles, J.R.: Validity and interinstrument reliability of a medical grade physical activity monitor in older adults. J. Measur. Phys. Behav. 4, 31–38 (2021)

    Article  Google Scholar 

  33. Jimenez-Moreno, A.C., et al.: Analyzing walking speeds with ankle and wrist worn accelerometers in a cohort with myotonic dystrophy. Disabil. Rehabil. 41, 2972–2978 (2019). https://doi.org/10.1080/09638288.2018.1482376

    Article  Google Scholar 

  34. Johnston, W., et al.: Recommendations for determining the validity of consumer wearable and smartphone step count: expert statement and checklist of the INTERLIVE network. Br. J. Sports Med. 55, 780–793 (2021). https://doi.org/10.1136/bjsports-2020-103147

    Article  Google Scholar 

  35. Ellis, C.: Oura (Generation 2) review. https://www.techradar.com/reviews/oura

  36. ActiGraph. https://actigraphcorp.com/

  37. Stoyanov, S.R., Hides, L., Kavanagh, D.J., Zelenko, O., Tjondronegoro, D., Mani, M.: Mobile app rating scale: a new tool for assessing the quality of health mobile apps. JMIR mHealth uHealth 3, e3422 (2015). https://doi.org/10.2196/mhealth.3422

    Article  Google Scholar 

  38. Sauro, J.: A Practical Guide to the System Usability Scale: Background, Benchmarks & Best Practices. Measuring Usability LLC, Denver, CO (2011)

    Google Scholar 

  39. Feng, Y., Wong, C.K., Janeja, V., Kuber, R., Mentis, H.M.: Comparison of tri-axial accelerometers step-count accuracy in slow walking conditions. Gait Posture 53, 11–16 (2017). https://doi.org/10.1016/j.gaitpost.2016.12.014

    Article  Google Scholar 

  40. Storti, K.L., Pettee, K.K., Brach, J.S., Talkowski, J.B., Richardson, C.R., Kriska, A.M.: Gait speed and step-count monitor accuracy in community-dwelling older adults. Med. Sci. Sports Exerc. 40, 59–64 (2008). https://doi.org/10.1249/mss.0b013e318158b504

    Article  Google Scholar 

Download references

Acknowledgements and Declarations

The Precision START lab is supported in part by internal funding from the University of Missouri Sinclair School of Nursing and MU Institute for Data Science and Informatics. The authors thank Drs. Jo-Ana D. Chase and Knoo Lee for their guidance. Malaika R. Gallimore (MRG) and Chelsea Howland received funding as pre-doctoral fellows from the National Institutes of Health (NIH) T32 Health Behavior Science Research training grant 5T32NR015426 and the Sinclair PhD Student Fellowship at the MU Sinclair School of Nursing. MRG is supported by NIH F31 training grant NR019923.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrina K. Boles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Boles, K.K., Gallimore, M.R., Howland, C., Emezue, C., Reeder, B. (2023). Technical Function Evaluation of Two Smart Wearables and Data Analysis Methods for Step Counts. In: Schmorrow, D.D., Fidopiastis, C.M. (eds) Augmented Cognition. HCII 2023. Lecture Notes in Computer Science(), vol 14019. Springer, Cham. https://doi.org/10.1007/978-3-031-35017-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35017-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35016-0

  • Online ISBN: 978-3-031-35017-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics