Abstract
Ancient books are the cultural heritage of human civilization, among which there are quite a few precious collections in China. However, compared to modern documents, the absence of large-scale historical document layout datasets makes the digitalization of ancient books still in its infancy and awaiting excavation and decryption. To this end, this paper proposes a large-scale dataset named SCUT-CAB for layout analysis of ancient Chinese books with complex layouts. The dataset is established by manually annotating 4000 images of ancient books, including 31,925 layout element annotations, which contains different binding forms, fonts, and preservation conditions. To facilitate the multiple tasks involved in document layout analysis, the dataset is segregated into two subsets: SCUT-CAB-Physical for physical layout analysis and SCUT-CAB-Logical for logical layout analysis. SCUT-CAB-Physical contains four categories, whereas SCUT-CAB-Logical contains 27 categories. Furthermore, the SCUT-CAB dataset comprises the labeling of the reading order. We compare various layout analysis methods for SCUT-CAB, i.e., methods based on object detection, instance segmentation, Transformer, and multi-modality. Extensive experiments reveal the challenges of layout analysis for ancient Chinese books. To the best of our knowledge, SCUT-CAB may be the first large-scale public available dataset for ancient Chinese document layout analysis. The dataset will be made publicly at https://github.com/HCIILAB/SCUT-CAB_Dataset_Release.
H. Cheng and C. Jian—Equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Antonacopoulos, A., Bridson, D., Papadopoulos, C., et al.: A realistic dataset for performance evaluation of document layout analysis. In: Proceedings of the International Conference on Document Analysis and Recognition, pp. 296–300 (2009)
Breuel, T.M.: Two geometric algorithms for layout analysis. In: Lopresti, D., Hu, J., Kashi, R. (eds.) DAS 2002. LNCS, vol. 2423, pp. 188–199. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45869-7_23
Cai, Z., Vasconcelos, N.: Cascade R-CNN: delving into high quality object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)
Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13
Chen, K., Pang, J., Wang, J., et al.: Hybrid task cascade for instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2019)
Chen, K., Wang, J., Pang, J., et al.: MMDetection: open MMlab detection toolbox and benchmark. arXiv preprint arXiv:1906.07155 (2019)
Clausner, C., Papadopoulos, C., Pletschacher, S., et al.: The ENP image and ground truth dataset of historical newspapers. In: Proceedings of the International Conference on Document Analysis and Recognition, pp. 931–935 (2015)
Fang, Y., Yang, S., Wang, X., et al.: Instances as queries. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 6910–6919 (2021)
Fischer, A., Frinken, V., Fornés, A., et al.: Transcription alignment of latin manuscripts using hidden Markov models. In: Proceedings of the 2011 Workshop on Historical Document Imaging and Processing, pp. 29–36 (2011)
Fischer, A., Keller, A., Frinken, V., et al.: Lexicon-free handwritten word spotting using character HMMs. Pattern Recogn. Lett. 33(7), 934–942 (2012)
He, K., Gkioxari, G., Dollar, P., et al.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision (2017)
He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)
Huang, Y.: Introduction to Collation of Ancient Books (in Chinese). Shaanxi People’s Publishing House (1985)
Kise, K., Sato, A., Iwata, M.: Segmentation of page images using the area Voronoi diagram. Comput. Vis. Image Underst. 70(3), 370–382 (1998)
Kong, T., Sun, F., Liu, H., et al.: Foveabox: beyound anchor-based object detection. IEEE Trans. Image Process. 29, 7389–7398 (2020)
Lee, J., Hayashi, H., Ohyama, W., et al.: Page segmentation using a convolutional neural network with trainable co-occurrence features. In: Proceedings of the International Conference on Document Analysis and Recognition, pp. 1023–1028 (2019)
Li, K., Wigington, C., Tensmeyer, C., et al.: Cross-domain document object detection: benchmark suite and method. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2020)
Li, M., Xu, Y., Cui, L., et al.: DocBank: a benchmark dataset for document layout analysis. In: Proceedings of the International Conference on Computational Linguistics, pp. 949–960 (2020)
Li, X., Wang, W., Wu, L., et al.: Generalized focal loss: learning qualified and distributed bounding boxes for dense object detection. In: Advances in Neural Information Processing Systems, vol. 33, pp. 21002–21012 (2020)
Lin, T.Y., Goyal, P., Girshick, R., et al.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision (2017)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Ma, W., Zhang, H., Jin, L., et al.: Joint layout analysis, character detection and recognition for historical document digitization. In: Proceedings of the International Conference on Frontiers in Handwriting Recognition, pp. 31–36 (2020)
Nagy, G., Seth, S., Viswanathan, M.: A prototype document image analysis system for technical journals. Computer 25(7), 10–22 (1992)
Namboodiri, A.M., Jain, A.K.: Document structure and layout analysis. In: Digital Document Processing: Major Directions and Recent Advances, pp. 29–48. Springer, London (2007). https://doi.org/10.1007/978-1-84628-726-8_2
O’Gorman, L.: The document spectrum for page layout analysis. IEEE Trans. Pattern Anal. Mach. Intell. 15(11), 1162–1173 (1993)
Papadopoulos, C., Pletschacher, S., Clausner, C., et al.: The IMPACT dataset of historical document images. In: Proceedings of the International Workshop on Historical Document Imaging and Processing, pp. 123–130 (2013)
Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)
Ren, S., He, K., Girshick, R., et al.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)
Saini, R., Dobson, D., Morrey, J., et al.: ICDAR 2019 historical document reading challenge on large structured chinese family records. In: Proceedings of the International Conference on Document Analysis and Recognition, pp. 1499–1504 (2019)
Shen, Z., Zhang, K., Dell, M.: A Large dataset of historical Japanese documents with complex layouts. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2020)
Simistira, F., Seuret, M., Eichenberger, N., et al.: DIVA-HisDB: a precisely annotated large dataset of challenging medieval manuscripts. In: International Conference on Frontiers in Handwriting Recognition, pp. 471–476 (2016)
Tian, Z., Shen, C., Chen, H., et al.: FCOS: fully convolutional one-stage object detection. In: Proceedings of the IEEE International Conference on Computer Vision (2019)
Vu, T., Kang, H., Yoo, C.D.: SCNet: training inference sample consistency for instance segmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 2701–2709 (2021)
Wahl, F.M., Wong, K.Y., Casey, R.G.: Block segmentation and text extraction in mixed text/image documents. Comput. Graph. Image Process. 20(4), 375–390 (1982)
Wang, X., Kong, T., Shen, C., Jiang, Y., Li, L.: SOLO: segmenting objects by locations. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12363, pp. 649–665. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58523-5_38
Wang, X., Zhang, R., Kong, T., et al.: SOLOv2: dynamic and fast instance segmentation. In: Advances in Neural Information Processing Systems, vol. 33, pp. 17721–17732 (2020)
Yang, X., Yumer, E., Asente, P., et al.: Learning to extract semantic structure from documents using multimodal fully convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)
Zhang, P., Li, C., Qiao, L., et al.: VSR: a unified framework for document layout analysis combining vision, semantics and relations. In: Proceedings of the International Conference on Document Analysis and Recognition, pp. 115–130 (2021)
Zhong, X., Tang, J., Jimeno Yepes, A.: PubLayNet: largest dataset ever for document layout analysis. In: Proceedings of the International Conference on Document Analysis and Recognition, pp. 1015–1022 (2019)
Zhu, X., Su, W., Lu, L., et al.: Deformable DETR: deformable transformers for end-to-end object detection. In: Proceedings of the Conference on Learning Representations (2021)
Acknowledgement
This research is supported in part by NSFC (Grant No.: 61936003), GD-NSF (no. 2017A030312006, No.2021A1515011870), Zhuhai Industry Core and Key Technology Research Project (no. 2220004002350), and the Science and Technology Foundation of Guangzhou Huangpu Development District (Grant 2020GH17)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Cheng, H., Jian, C., Wu, S., Jin, L. (2022). SCUT-CAB: A New Benchmark Dataset of Ancient Chinese Books with Complex Layouts for Document Layout Analysis. In: Porwal, U., Fornés, A., Shafait, F. (eds) Frontiers in Handwriting Recognition. ICFHR 2022. Lecture Notes in Computer Science, vol 13639. Springer, Cham. https://doi.org/10.1007/978-3-031-21648-0_30
Download citation
DOI: https://doi.org/10.1007/978-3-031-21648-0_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-21647-3
Online ISBN: 978-3-031-21648-0
eBook Packages: Computer ScienceComputer Science (R0)