[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

SCUT-CAB: A New Benchmark Dataset of Ancient Chinese Books with Complex Layouts for Document Layout Analysis

  • Conference paper
  • First Online:
Frontiers in Handwriting Recognition (ICFHR 2022)

Abstract

Ancient books are the cultural heritage of human civilization, among which there are quite a few precious collections in China. However, compared to modern documents, the absence of large-scale historical document layout datasets makes the digitalization of ancient books still in its infancy and awaiting excavation and decryption. To this end, this paper proposes a large-scale dataset named SCUT-CAB for layout analysis of ancient Chinese books with complex layouts. The dataset is established by manually annotating 4000 images of ancient books, including 31,925 layout element annotations, which contains different binding forms, fonts, and preservation conditions. To facilitate the multiple tasks involved in document layout analysis, the dataset is segregated into two subsets: SCUT-CAB-Physical for physical layout analysis and SCUT-CAB-Logical for logical layout analysis. SCUT-CAB-Physical contains four categories, whereas SCUT-CAB-Logical contains 27 categories. Furthermore, the SCUT-CAB dataset comprises the labeling of the reading order. We compare various layout analysis methods for SCUT-CAB, i.e., methods based on object detection, instance segmentation, Transformer, and multi-modality. Extensive experiments reveal the challenges of layout analysis for ancient Chinese books. To the best of our knowledge, SCUT-CAB may be the first large-scale public available dataset for ancient Chinese document layout analysis. The dataset will be made publicly at https://github.com/HCIILAB/SCUT-CAB_Dataset_Release.

H. Cheng and C. Jian—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 63.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 79.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Antonacopoulos, A., Bridson, D., Papadopoulos, C., et al.: A realistic dataset for performance evaluation of document layout analysis. In: Proceedings of the International Conference on Document Analysis and Recognition, pp. 296–300 (2009)

    Google Scholar 

  2. Breuel, T.M.: Two geometric algorithms for layout analysis. In: Lopresti, D., Hu, J., Kashi, R. (eds.) DAS 2002. LNCS, vol. 2423, pp. 188–199. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45869-7_23

    Chapter  MATH  Google Scholar 

  3. Cai, Z., Vasconcelos, N.: Cascade R-CNN: delving into high quality object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  4. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  5. Chen, K., Pang, J., Wang, J., et al.: Hybrid task cascade for instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  6. Chen, K., Wang, J., Pang, J., et al.: MMDetection: open MMlab detection toolbox and benchmark. arXiv preprint arXiv:1906.07155 (2019)

  7. Clausner, C., Papadopoulos, C., Pletschacher, S., et al.: The ENP image and ground truth dataset of historical newspapers. In: Proceedings of the International Conference on Document Analysis and Recognition, pp. 931–935 (2015)

    Google Scholar 

  8. Fang, Y., Yang, S., Wang, X., et al.: Instances as queries. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 6910–6919 (2021)

    Google Scholar 

  9. Fischer, A., Frinken, V., Fornés, A., et al.: Transcription alignment of latin manuscripts using hidden Markov models. In: Proceedings of the 2011 Workshop on Historical Document Imaging and Processing, pp. 29–36 (2011)

    Google Scholar 

  10. Fischer, A., Keller, A., Frinken, V., et al.: Lexicon-free handwritten word spotting using character HMMs. Pattern Recogn. Lett. 33(7), 934–942 (2012)

    Article  Google Scholar 

  11. He, K., Gkioxari, G., Dollar, P., et al.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision (2017)

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  13. Huang, Y.: Introduction to Collation of Ancient Books (in Chinese). Shaanxi People’s Publishing House (1985)

    Google Scholar 

  14. Kise, K., Sato, A., Iwata, M.: Segmentation of page images using the area Voronoi diagram. Comput. Vis. Image Underst. 70(3), 370–382 (1998)

    Article  Google Scholar 

  15. Kong, T., Sun, F., Liu, H., et al.: Foveabox: beyound anchor-based object detection. IEEE Trans. Image Process. 29, 7389–7398 (2020)

    Article  MATH  Google Scholar 

  16. Lee, J., Hayashi, H., Ohyama, W., et al.: Page segmentation using a convolutional neural network with trainable co-occurrence features. In: Proceedings of the International Conference on Document Analysis and Recognition, pp. 1023–1028 (2019)

    Google Scholar 

  17. Li, K., Wigington, C., Tensmeyer, C., et al.: Cross-domain document object detection: benchmark suite and method. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  18. Li, M., Xu, Y., Cui, L., et al.: DocBank: a benchmark dataset for document layout analysis. In: Proceedings of the International Conference on Computational Linguistics, pp. 949–960 (2020)

    Google Scholar 

  19. Li, X., Wang, W., Wu, L., et al.: Generalized focal loss: learning qualified and distributed bounding boxes for dense object detection. In: Advances in Neural Information Processing Systems, vol. 33, pp. 21002–21012 (2020)

    Google Scholar 

  20. Lin, T.Y., Goyal, P., Girshick, R., et al.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision (2017)

    Google Scholar 

  21. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  22. Ma, W., Zhang, H., Jin, L., et al.: Joint layout analysis, character detection and recognition for historical document digitization. In: Proceedings of the International Conference on Frontiers in Handwriting Recognition, pp. 31–36 (2020)

    Google Scholar 

  23. Nagy, G., Seth, S., Viswanathan, M.: A prototype document image analysis system for technical journals. Computer 25(7), 10–22 (1992)

    Article  Google Scholar 

  24. Namboodiri, A.M., Jain, A.K.: Document structure and layout analysis. In: Digital Document Processing: Major Directions and Recent Advances, pp. 29–48. Springer, London (2007). https://doi.org/10.1007/978-1-84628-726-8_2

  25. O’Gorman, L.: The document spectrum for page layout analysis. IEEE Trans. Pattern Anal. Mach. Intell. 15(11), 1162–1173 (1993)

    Article  Google Scholar 

  26. Papadopoulos, C., Pletschacher, S., Clausner, C., et al.: The IMPACT dataset of historical document images. In: Proceedings of the International Workshop on Historical Document Imaging and Processing, pp. 123–130 (2013)

    Google Scholar 

  27. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  28. Ren, S., He, K., Girshick, R., et al.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  29. Saini, R., Dobson, D., Morrey, J., et al.: ICDAR 2019 historical document reading challenge on large structured chinese family records. In: Proceedings of the International Conference on Document Analysis and Recognition, pp. 1499–1504 (2019)

    Google Scholar 

  30. Shen, Z., Zhang, K., Dell, M.: A Large dataset of historical Japanese documents with complex layouts. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2020)

    Google Scholar 

  31. Simistira, F., Seuret, M., Eichenberger, N., et al.: DIVA-HisDB: a precisely annotated large dataset of challenging medieval manuscripts. In: International Conference on Frontiers in Handwriting Recognition, pp. 471–476 (2016)

    Google Scholar 

  32. Tian, Z., Shen, C., Chen, H., et al.: FCOS: fully convolutional one-stage object detection. In: Proceedings of the IEEE International Conference on Computer Vision (2019)

    Google Scholar 

  33. Vu, T., Kang, H., Yoo, C.D.: SCNet: training inference sample consistency for instance segmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 2701–2709 (2021)

    Google Scholar 

  34. Wahl, F.M., Wong, K.Y., Casey, R.G.: Block segmentation and text extraction in mixed text/image documents. Comput. Graph. Image Process. 20(4), 375–390 (1982)

    Article  Google Scholar 

  35. Wang, X., Kong, T., Shen, C., Jiang, Y., Li, L.: SOLO: segmenting objects by locations. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12363, pp. 649–665. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58523-5_38

    Chapter  Google Scholar 

  36. Wang, X., Zhang, R., Kong, T., et al.: SOLOv2: dynamic and fast instance segmentation. In: Advances in Neural Information Processing Systems, vol. 33, pp. 17721–17732 (2020)

    Google Scholar 

  37. Yang, X., Yumer, E., Asente, P., et al.: Learning to extract semantic structure from documents using multimodal fully convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  38. Zhang, P., Li, C., Qiao, L., et al.: VSR: a unified framework for document layout analysis combining vision, semantics and relations. In: Proceedings of the International Conference on Document Analysis and Recognition, pp. 115–130 (2021)

    Google Scholar 

  39. Zhong, X., Tang, J., Jimeno Yepes, A.: PubLayNet: largest dataset ever for document layout analysis. In: Proceedings of the International Conference on Document Analysis and Recognition, pp. 1015–1022 (2019)

    Google Scholar 

  40. Zhu, X., Su, W., Lu, L., et al.: Deformable DETR: deformable transformers for end-to-end object detection. In: Proceedings of the Conference on Learning Representations (2021)

    Google Scholar 

Download references

Acknowledgement

This research is supported in part by NSFC (Grant No.: 61936003), GD-NSF (no. 2017A030312006, No.2021A1515011870), Zhuhai Industry Core and Key Technology Research Project (no. 2220004002350), and the Science and Technology Foundation of Guangzhou Huangpu Development District (Grant 2020GH17)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianwen Jin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cheng, H., Jian, C., Wu, S., Jin, L. (2022). SCUT-CAB: A New Benchmark Dataset of Ancient Chinese Books with Complex Layouts for Document Layout Analysis. In: Porwal, U., Fornés, A., Shafait, F. (eds) Frontiers in Handwriting Recognition. ICFHR 2022. Lecture Notes in Computer Science, vol 13639. Springer, Cham. https://doi.org/10.1007/978-3-031-21648-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21648-0_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21647-3

  • Online ISBN: 978-3-031-21648-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics