Abstract
3D shapes provide substantially more information than 2D images. However, the acquisition of 3D shapes is sometimes very difficult or even impossible in comparison with acquiring 2D images, making it necessary to derive the 3D shape from 2D images. Although this is, in general, a mathematically ill-posed problem, it might be solved by constraining the problem formulation using prior information. Here, we present a new approach based on Kendall’s shape space to reconstruct 3D shapes from single monocular 2D images. The work is motivated by an application to study the feeding behavior of the basking shark, an endangered species whose massive size and mobility render 3D shape data nearly impossible to obtain, hampering understanding of their feeding behaviors and ecology. 2D images of these animals in feeding position, however, are readily available. We compare our approach with state-of-the-art shape-based approaches, both on human stick models and on shark head skeletons. Using a small set of training shapes, we show that the Kendall shape space approach is substantially more robust than previous methods and results in plausible shapes. This is essential for the motivating application in which specimens are rare and therefore only few training shapes are available.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Carnegie Mellon University - Graphics Lab - motion capture library http://mocap.cs.cmu.edu/.
- 2.
- 3.
References
Agudo, A., Agapito, L., Calvo, B., Montiel, J.M.: Good vibrations: a modal analysis approach for sequential non-rigid structure from motion. In: Proceedings of IEEE Computer Vision and Pattern Recognition, pp. 1558–1565 (2014)
Akhter, I., Black, M.J.: Pose-conditioned joint angle limits for 3D human pose reconstruction. In: Proceedings of IEEE Computer Vision and Pattern Recognition, pp. 1446–1455 (2015)
Ambellan, F., Hanik, M., von Tycowicz, C.: Morphomatics: geometric morphometrics in non-Euclidean shape spaces (2021). https://doi.org/10.12752/8544
Ambellan, F., Lamecker, H., von Tycowicz, C., Zachow, S.: Statistical shape models: understanding and mastering variation in anatomy. In: Rea, P.M. (ed.) Biomedical Visualisation. AEMB, vol. 1156, pp. 67–84. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19385-0_5
Boumal, N., Mishra, B., Absil, P.A., Sepulchre, R.: ManOPT, a MATLAB toolbox for optimization on manifolds. J. Mach. Learn. Res. 15(1), 1455–1459 (2014)
Bregler, C., Hertzmann, A., Biermann, H.: Recovering non-rigid 3D shape from image streams. In: Proceedings of IEEE Computer Vision and Pattern Recognition, vol. 2, pp. 690–696. IEEE (2000)
Cao, C., Weng, Y., Lin, S., Zhou, K.: 3D shape regression for real-time facial animation. ACM Trans. Graph. (TOG) 32(4), 1–10 (2013)
Chakraborty, R., Bouza, J., Manton, J., Vemuri, B.C.: Manifoldnet: a deep neural network for manifold-valued data with applications. IEEE Trans. Pattern Anal. Mach. Intell. (2020)
Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models-their training and application. Comput. Vis. Image Underst. 61(1), 38–59 (1995)
Fletcher, P.T., Lu, C., Pizer, S.M., Joshi, S.: Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Trans. Med. Imaging 23(8), 995–1005 (2004)
Friji, R., Drira, H., Chaieb, F., Kurtek, S., Kchok, H.: KshapeNet: Riemannian network on Kendall shape space for skeleton based action recognition. arXiv preprint arXiv:2011.12004 (2020)
Frostig, R., Johnson, M.J., Leary, C.: Compiling machine learning programs via high-level tracing. Syst. Mach. Learn. 4(9) (2018)
Heimann, T., Meinzer, H.P.: Statistical shape models for 3D medical image segmentation: a review. Med. Image Anal. 13(4), 543–563 (2009)
Hejrati, M., Ramanan, D.: Analyzing 3D objects in cluttered images. In: Advances in Neural Information Processing Systems, vol. 25 (2012)
Howe, N.R.: Silhouette lookup for automatic pose tracking. In: 2004 Conference on Computer Vision and Pattern Recognition Workshop, pp. 15–22. IEEE (2004)
Jiang, H., Liu, H., Tan, P., Zhang, G., Bao, H.: 3D reconstruction of dynamic scenes with multiple handheld cameras. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7573, pp. 601–615. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33709-3_43
Kendall, D.G.: Shape manifolds, procrustean metrics, and complex projective spaces. Bull. Lond. Math. Soc. 16(2), 81–121 (1984)
Kendall, D.G., Barden, D., Carne, T.K., Le, H.: Shape and Shape Theory. Wiley, Hoboken (2009)
Larsen, E.S., Mordohai, P., Pollefeys, M., Fuchs, H.: Temporally consistent reconstruction from multiple video streams using enhanced belief propagation. In: 2007 IEEE 11th International Conference on Computer Vision, pp. 1–8. IEEE (2007)
Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)
Mehta, D., et al.: VNect: real-time 3D human pose estimation with a single RGB camera. ACM Trans. Graph. (TOG) 36(4), 1–14 (2017)
Michalkiewicz, M., Parisot, S., Tsogkas, S., Baktashmotlagh, M., Eriksson, A., Belilovsky, E.: Few-shot single-view 3-D object reconstruction with compositional priors. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12370, pp. 614–630. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58595-2_37
Mori, G., Malik, J.: Recovering 3D human body configurations using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 28(7), 1052–1062 (2006)
Mustafa, A., Kim, H., Guillemaut, J.Y., Hilton, A.: General dynamic scene reconstruction from multiple view video. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 900–908 (2015)
Nava-Yazdani, E., Hege, H.C., Sullivan, T.J., von Tycowicz, C.: Geodesic analysis in Kendall’s shape space with epidemiological applications. J. Math. Imaging Vision 62(4), 549–559 (2020)
Park, S., Lee, M., Kwak, N.: Procrustean regression networks: learning 3D structure of non-rigid objects from 2D annotations. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12374, pp. 1–18. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58526-6_1
Paskin, M., Dean, M., Baum, D., von Tycowicz, C.: A Kendall shape space approach to 3D shape estimation from 2D landmarks - source code and data (2022). https://doi.org/10.12752/8730
Pennec, X.: Barycentric subspace analysis on manifolds. Ann. Stat. 46(6A), 2711–2746 (2018)
Plänkers, R., Fua, P.: Tracking and modeling people in video sequences. Comput. Vis. Image Underst. 81(3), 285–302 (2001)
Ramakrishna, V., Kanade, T., Sheikh, Y.: Reconstructing 3D human pose from 2D image landmarks. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 573–586. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33765-9_41
Sanderson, S.L., Roberts, E., Lineburg, J., Brooks, H.: Fish mouths as engineering structures for vortical cross-step filtration. Nat. Commun. 7(1), 1–9 (2016)
Sanzari, M., Ntouskos, V., Pirri, F.: Bayesian image based 3D pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 566–582. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_34
Sims, D.W.: Sieving a living: a review of the biology, ecology and conservation status of the plankton-feeding basking shark Cetorhinus maximus. Adv. Mar. Biol. 54, 171–220 (2008)
Tomasi, C., Kanade, T.: Shape and motion from image streams under orthography: a factorization method. Int. J. Comput. Vis. 9(2), 137–154 (1992)
Wang, C., Wang, Y., Lin, Z., Yuille, A.L., Gao, W.: Robust estimation of 3d human poses from a single image. In: Proceedings of IEEE Computer Vision and Pattern Recognition, pp. 2361–2368 (2014)
Wegner, N.C.: Elasmobranch gill structure. In: Fish Physiology, vol. 34, pp. 101–151. Elsevier, Amsterdam (2015)
Zhou, X., Leonardos, S., Hu, X., Daniilidis, K.: 3d shape estimation from 2d landmarks: A convex relaxation approach. In: Proc. IEEE Comput. Vis. Pattern Recognit. pp. 4447–4455 (2015)
Zia, M.Z., Stark, M., Schiele, B., Schindler, K.: Detailed 3D representations for object recognition and modeling. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2608–2623 (2013)
Acknowledgments
We are grateful for the funding by Deutsche Forschungsgemeinschaft (DFG) through Germany’s Excellence Strategy – The Berlin Mathematics Research Center MATH+ (EXC-2046/1, project ID: 390685689) and by Bundesministerium für Bildung und Forschung (BMBF) through BIFOLD – The Berlin Institute for the Foundations of Learning and Data (ref. 01IS18025A and ref. 01IS18037A). The basking shark work was funded in part by an HFSP Program Grant (RGP0010-2020 to M.N.D.). We also want to thank the British Museum of Natural History and Zoological Museum, University of Copenhagen for providing basking shark specimens, Pepijn Kamminga, James Maclaine, Allison Luger and Henrik Lauridsen for help acquiring CT data, and Alex Mustard (Underwater Photography) and Maura Mitchell (Manx Basking Shark Watch) for granting us permission to use their underwater images of basking sharks.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Paskin, M., Baum, D., Dean, M.N., von Tycowicz, C. (2022). A Kendall Shape Space Approach to 3D Shape Estimation from 2D Landmarks. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13662. Springer, Cham. https://doi.org/10.1007/978-3-031-20086-1_21
Download citation
DOI: https://doi.org/10.1007/978-3-031-20086-1_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20085-4
Online ISBN: 978-3-031-20086-1
eBook Packages: Computer ScienceComputer Science (R0)