[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

SECLEDS: Sequence Clustering in Evolving Data Streams via Multiple Medoids and Medoid Voting

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2022)

Abstract

Sequence clustering in a streaming environment is challenging because it is computationally expensive, and the sequences may evolve over time. K-medoids or Partitioning Around Medoids (PAM) is commonly used to cluster sequences since it supports alignment-based distances, and the k-centers being actual data items helps with cluster interpretability. However, offline k-medoids has no support for concept drift, while also being prohibitively expensive for clustering data streams. We therefore propose SECLEDS, a streaming variant of the k-medoids algorithm with constant memory footprint. SECLEDS has two unique properties: i) it uses multiple medoids per cluster, producing stable high-quality clusters, and ii) it handles concept drift using an intuitive Medoid Voting scheme for approximating cluster distances. Unlike existing adaptive algorithms that create new clusters for new concepts, SECLEDS follows a fundamentally different approach, where the clusters themselves evolve with an evolving stream. Using real and synthetic datasets, we empirically demonstrate that SECLEDS produces high-quality clusters regardless of drift, stream size, data dimensionality, and number of clusters. We compare against three popular stream and batch clustering algorithms. The state-of-the-art BanditPAM is used as an offline benchmark. SECLEDS achieves comparable F1 score to BanditPAM while reducing the number of required distance computations by 83.7%. Importantly, SECLEDS outperforms all baselines by 138.7% when the stream contains drift. We also cluster real network traffic, and provide evidence that SECLEDS can support network bandwidths of up to 1.08 Gbps while using the (expensive) dynamic time warping distance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 63.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 79.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    SECLEDS: https://github.com/tudelft-cda-lab/SECLEDS.

  2. 2.

    https://mosaicnetworx.com/it-challenges/bits-bytes-understanding-enterprise-network-speeds/.

References

  1. Ackermann, M.R., Märtens, M., Raupach, C., Swierkot, K., Lammersen, C., Sohler, C.: Streamkm++ a clustering algorithm for data streams. JEA 17, 2–1 (2012)

    MathSciNet  MATH  Google Scholar 

  2. Aggarwal, C.C., Philip, S.Y., Han, J., Wang, J.: A framework for clustering evolving data streams. In: VLDB, pp. 81–92. Elsevier (2003)

    Google Scholar 

  3. de Andrade Silva, J., Hruschka, E.R.: Extending k-means-based algorithms for evolving data streams with variable number of clusters. In: ICMLA, vol. 2, pp. 14–19. IEEE (2011)

    Google Scholar 

  4. Barros, R.S.M., Santos, S.G.T.C.: A large-scale comparison of concept drift detectors. Inf. Sci. 451, 348–370 (2018)

    Article  MathSciNet  Google Scholar 

  5. Boeva, V., Nordahl, C.: Modeling evolving user behavior via sequential clustering. In: Cellier, P., Driessens, K. (eds.) ECML PKDD 2019. CCIS, vol. 1168, pp. 12–20. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43887-6_2

    Chapter  Google Scholar 

  6. Cao, F., Estert, M., Qian, W., Zhou, A.: Density-based clustering over an evolving data stream with noise. In: SDM, pp. 328–339. SIAM (2006)

    Google Scholar 

  7. Cook, D.J., Krishnan, N.C., Rashidi, P.: Activity discovery and activity recognition: a new partnership. IEEE Trans. Cybern. 43(3), 820–828 (2013)

    Article  Google Scholar 

  8. Dua, D., Graff, C.: UCI machine learning repository (2017)

    Google Scholar 

  9. Fahy, C., Yang, S.: Finding and tracking multi-density clusters in online dynamic data streams. IEEE Trans. Big Data 8, 178–192 (2019)

    Google Scholar 

  10. Garcia, S., Grill, M., Stiborek, J., Zunino, A.: An empirical comparison of botnet detection methods. Comput. Secur. 45, 100–123 (2014)

    Google Scholar 

  11. Glover, F.: Future paths for integer programming and links to artificial intelligence. Comput. Oper. Res. 13(5), 533–549 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  12. Guijo-Rubio, D., Durán-Rosal, A.M., Gutiérrez, P.A., Troncoso, A., Hervás-Martínez, C.: Time-series clustering based on the characterization of segment typologies. IEEE Trans. Cybern. 51(11), 5409–5422 (2020)

    Article  Google Scholar 

  13. Guo, J., Liu, G., Zuo, Y., Wu, J.: Learning sequential behavior representations for fraud detection. In: ICDM, pp. 127–136. IEEE (2018)

    Google Scholar 

  14. Hyde, R., Angelov, P., MacKenzie, A.R.: Fully online clustering of evolving data streams into arbitrarily shaped clusters. Inf. Sci. 382, 96–114 (2017)

    Article  Google Scholar 

  15. Islam, M.K., Ahmed, M.M., Zamli, K.Z.: A buffer-based online clustering for evolving data stream. Inf. Sci. 489, 113–135 (2019)

    Article  MathSciNet  Google Scholar 

  16. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., Zhang, G.: Learning under concept drift: a review. TKDE 31(12), 2346–2363 (2018)

    Google Scholar 

  18. Lu, N., Zhang, G., Lu, J.: Concept drift detection via competence models. Artif. Intell. 209, 11–28 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Manning, C., Raghavan, P., Schütze, H.: Introduction to information retrieval. Nat. Lang. Eng. 16(1), 100–103 (2010)

    MATH  Google Scholar 

  20. Nadeem, A., Hammerschmidt, C., Gañán, C.H., Verwer, S.: Beyond labeling: using clustering to build network behavioral profiles of malware families. In: Stamp, M., Alazab, M., Shalaginov, A. (eds.) Malware Analysis Using Artificial Intelligence and Deep Learning, pp. 381–409. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-62582-5_15

  21. Nadeem, A., Verwer, S., Moskal, S., Yang, S.J.: Alert-driven attack graph generation using s-PDFA. IEEE Trans. Dependable Sec. Comput. 19(2), 731–746 (2021)

    Google Scholar 

  22. Pedregosa, F., et al.: Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Schubert, E., Rousseeuw, P.J.: Faster k-medoids clustering: improving the PAM, CLARA, and CLARANS algorithms. In: Amato, G., Gennaro, C., Oria, V., Radovanović, M. (eds.) SISAP 2019. LNCS, vol. 11807, pp. 171–187. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32047-8_16

    Chapter  Google Scholar 

  24. Sculley, D.: Web-scale k-means clustering. In: WWW, pp. 1177–1178 (2010)

    Google Scholar 

  25. Silva, J.A., Faria, E.R., Barros, R.C., Hruschka, E.R., de Carvalho, A.C., Gama, J.: Data stream clustering: a survey. CSUR 46(1), 1–31 (2013)

    Google Scholar 

  26. Tiwari, M., Zhang, M.J., Mayclin, J., Thrun, S., Piech, C., Shomorony, I.: Banditpam: almost linear time k-medoids clustering via multi-armed bandits. NeurIPS 33, 10211–10222 (2020)

    Google Scholar 

  27. Ushakov, A.V., Vasilyev, I.: Near-optimal large-scale k-medoids clustering. Inf. Sci. 545, 344–362 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, T., Li, Q., Bucci, D.J., Liang, Y., Chen, B., Varshney, P.K.: K-medoids clustering of data sequences with composite distributions. IEEE Trans. Signal Process. 67(8), 2093–2106 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang, X., Mueen, A., Ding, H., Trajcevski, G., Scheuermann, P., Keogh, E.: Experimental comparison of representation methods and distance measures for time series data. Data Min. Knowl. Disc. 26(2), 275–309 (2013)

    Article  MathSciNet  Google Scholar 

  30. Wang, Y., Chen, L., Mei, J.P.: Incremental fuzzy clustering with multiple medoids for large data. IEEE Trans. Fuzzy Syst. 22(6), 1557–1568 (2014)

    Article  Google Scholar 

  31. Zhang, T., Ramakrishnan, R., Livny, M.: Birch: a new data clustering algorithm and its applications. Data Min. Knowl. Disc. 1(2), 141–182 (1997)

    Article  Google Scholar 

  32. Žliobaitė, I., Pechenizkiy, M., Gama, J.: An overview of concept drift applications. In: Japkowicz, N., Stefanowski, J. (eds.) Big Data Analysis: New Algorithms for a New Society. SBD, vol. 16, pp. 91–114. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-26989-4_4

    Chapter  Google Scholar 

  33. Zubaroğlu, A., Atalay, V.: Data stream clustering: a review. Artif. Intell. Rev. 54(2), 1201–1236 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Ruben te Wierik, Silviu Fucarev, and Rami Al-Obaidi for their contributions to the SECLEDS algorithm.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azqa Nadeem .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1104 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nadeem, A., Verwer, S. (2023). SECLEDS: Sequence Clustering in Evolving Data Streams via Multiple Medoids and Medoid Voting. In: Amini, MR., Canu, S., Fischer, A., Guns, T., Kralj Novak, P., Tsoumakas, G. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2022. Lecture Notes in Computer Science(), vol 13713. Springer, Cham. https://doi.org/10.1007/978-3-031-26387-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26387-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26386-6

  • Online ISBN: 978-3-031-26387-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics