[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

FAR: Fourier Aerial Video Recognition

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

We present an algorithm, Fourier Activity Recognition (FAR), for UAV video activity recognition. Our formulation uses a novel Fourier object disentanglement method to innately separate out the human agent (which is typically small) from the background. Our disentanglement technique operates in the frequency domain to characterize the extent of temporal change of spatial pixels, and exploits convolution-multiplication properties of Fourier transform to map this representation to the corresponding object-background entangled features obtained from the network. To encapsulate contextual information and long-range space-time dependencies, we present a novel Fourier Attention algorithm, which emulates the benefits of self-attention by modeling the weighted outer product in the frequency domain. Our Fourier attention formulation uses much fewer computations than self-attention. We have evaluated our approach on multiple UAV datasets including UAV Human RGB, UAV Human Night, Drone Action, and NEC Drone. We demonstrate a relative improvement of 8.02%–38.69% in top-1 accuracy and up to 3 times faster over prior works.

The second and third authors contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arnab, A., Dehghani, M., Heigold, G., Sun, C., Lučić, M., Schmid, C.: Vivit: A video vision transformer. arXiv preprint arXiv:2103.15691 (2021)

  2. Barekatain, M., et al.: Okutama-action: An aerial view video dataset for concurrent human action detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp. 28–35 (2017)

    Google Scholar 

  3. Beauchemin, S.S., Barron, J.L.: The computation of optical flow. ACM Comput. Surveys (CSUR) 27(3), 433–466 (1995)

    Article  Google Scholar 

  4. Benjdira, B., Bazi, Y., Koubaa, A., Ouni, K.: Unsupervised domain adaptation using generative adversarial networks for semantic segmentation of aerial images. Remote Sensing 11(11), 1369 (2019)

    Article  Google Scholar 

  5. Bertasius, G., Wang, H., Torresani, L.: Is space-time attention all you need for video understanding? arXiv preprint arXiv:2102.05095 (2021)

  6. Buijs, H., Pomerleau, A., Fournier, M., Tam, W.: Implementation of a fast fourier transform (fft) for image processing applications. IEEE Trans. Acoust. Speech Signal Process. 22(6), 420–424 (1974)

    Article  Google Scholar 

  7. Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the kinetics dataset. In: proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6299–6308 (2017)

    Google Scholar 

  8. Chen, Y., Li, W., Sakaridis, C., Dai, D., Van Gool, L.: Domain adaptive faster r-cnn for object detection in the wild. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3339–3348 (2018)

    Google Scholar 

  9. Chéron, G., Laptev, I., Schmid, C.: P-cnn: Pose-based cnn features for action recognition. In: Proceedings of the IEEE international conference on computer vision, pp. 3218–3226 (2015)

    Google Scholar 

  10. Chi, L., Jiang, B., Mu, Y.: Fast fourier convolution. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 4479–4488. Curran Associates, Inc. (2020), https://proceedings.neurips.cc/paper/2020/file/2fd5d41ec6cfab47e32164d5624269b1-Paper.pdf

  11. Choi, J.: Action recognition list of papers. In: https://github.com/jinwchoi/awesome-action-recognition

  12. Choi, J., Gao, C., Messou, J.C., Huang, J.B.: Why can’t i dance in the mall? learning to mitigate scene bias in action recognition. arXiv preprint arXiv:1912.05534 (2019)

  13. Choi, J., Sharma, G., Chandraker, M., Huang, J.B.: Unsupervised and semi-supervised domain adaptation for action recognition from drones. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1717–1726 (2020)

    Google Scholar 

  14. Chun, B.T., Bae, Y., Kim, T.Y.: Automatic text extraction in digital videos using fft and neural network. In: FUZZ-IEEE’99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No. 99CH36315), vol. 2, pp. 1112–1115. IEEE (1999)

    Google Scholar 

  15. Ding, M., Li, N., Song, Z., Zhang, R., Zhang, X., Zhou, H.: A lightweight action recognition method for unmanned-aerial-vehicle video. In: 2020 IEEE 3rd International Conference on Electronics and Communication Engineering (ICECE), pp. 181–185. IEEE (2020)

    Google Scholar 

  16. Dosovitskiy, A., et al.: Flownet: Learning optical flow with convolutional networks. In: Proceedings of the IEEE international conference on computer vision, pp. 2758–2766 (2015)

    Google Scholar 

  17. Du, D., et al.: The unmanned aerial vehicle benchmark: Object detection and tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 370–386 (2018)

    Google Scholar 

  18. Dundar, A., Shih, K.J., Garg, A., Pottorf, R., Tao, A., Catanzaro, B.: Unsupervised disentanglement of pose, appearance and background from images and videos. arXiv preprint arXiv:2001.09518 (2020)

  19. Ellenfeld, M., Moosbauer, S., Cardenes, R., Klauck, U., Teutsch, M.: Deep fusion of appearance and frame differencing for motion segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4339–4349 (2021)

    Google Scholar 

  20. Fan, H., Xiong, B., Mangalam, K., Li, Y., Yan, Z., Malik, J., Feichtenhofer, C.: Multiscale vision transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6824–6835 (2021)

    Google Scholar 

  21. Feichtenhofer, C.: X3d: Expanding architectures for efficient video recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 203–213 (2020)

    Google Scholar 

  22. Feichtenhofer, C., Fan, H., Malik, J., He, K.: Slowfast networks for video recognition. In: Proceedings of the IEEE/CVF international conference on computer vision, pp. 6202–6211 (2019)

    Google Scholar 

  23. Feichtenhofer, C., Pinz, A., Zisserman, A.: Convolutional two-stream network fusion for video action recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition., pp. 1933–1941 (2016)

    Google Scholar 

  24. Frigo, M., Johnson, S.G.: Fftw: An adaptive software architecture for the fft. In: Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP’98 (Cat. No. 98CH36181). vol. 3, pp. 1381–1384. IEEE (1998)

    Google Scholar 

  25. Fu, J., et al.: Dual attention network for scene segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3146–3154 (2019)

    Google Scholar 

  26. Gammulle, H., Denman, S., Sridharan, S., Fookes, C.: Two stream lstm: A deep fusion framework for human action recognition. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 177–186. IEEE (2017)

    Google Scholar 

  27. Girdhar, R., Carreira, J., Doersch, C., Zisserman, A.: Video action transformer network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 244–253 (2019)

    Google Scholar 

  28. Gowda, S.N., Rohrbach, M., Sevilla-Lara, L.: Smart frame selection for action recognition. arXiv preprint arXiv:2012.10671 (2020)

  29. Griffin, B.A., Corso, J.J.: Bubblenets: Learning to select the guidance frame in video object segmentation by deep sorting frames. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8914–8923 (2019)

    Google Scholar 

  30. Hara, K., Kataoka, H., Satoh, Y.: Can spatiotemporal 3D cnns retrace the history of 2d cnns and imagenet? In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp. 6546–6555 (2018)

    Google Scholar 

  31. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778 (2016)

    Google Scholar 

  32. Hussein, N., Gavves, E., Smeulders, A.W.: Timeception for complex action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 254–263 (2019)

    Google Scholar 

  33. Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: Flownet 2.0: Evolution of optical flow estimation with deep networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2462–2470 (2017)

    Google Scholar 

  34. Jhuang, H., Gall, J., Zuffi, S., Schmid, C., Black, M.J.: Towards understanding action recognition. In: Proceedings of the IEEE international conference on computer vision, pp. 3192–3199 (2013)

    Google Scholar 

  35. Katharopoulos, A., Vyas, A., Pappas, N., Fleuret, F.: Transformers are rnns: Fast autoregressive transformers with linear attention. In: International Conference on Machine Learning, pp. 5156–5165. PMLR (2020)

    Google Scholar 

  36. Kim, Y.J., Awadalla, H.H.: Fastformers: Highly efficient transformer models for natural language understanding. arXiv preprint arXiv:2010.13382 (2020)

  37. Korbar, B., Tran, D., Torresani, L.: Scsampler: Sampling salient clips from video for efficient action recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6232–6242 (2019)

    Google Scholar 

  38. Lavin, A., Gray, S.: Fast algorithms for convolutional neural networks. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 4013–4021. IEEE Computer Society, Los Alamitos, CA, USA (jun 2016). https://doi.org/10.1109/CVPR.2016.435

  39. Lee, M., Lee, S., Son, S., Park, G., Kwak, N.: Motion feature network: fixed motion filter for action recognition. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 392–408. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_24

    Chapter  Google Scholar 

  40. Lee-Thorp, J., Ainslie, J., Eckstein, I., Ontanon, S.: Fnet: Mixing tokens with fourier transforms (2021)

    Google Scholar 

  41. Li, K., Wu, Z., Peng, K.C., Ernst, J., Fu, Y.: Tell me where to look: Guided attention inference network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9215–9223 (2018)

    Google Scholar 

  42. Li, R., Su, J., Duan, C., Zheng, S.: Linear attention mechanism: An efficient attention for semantic segmentation. arXiv preprint arXiv:2007.14902 (2020)

  43. Li, T., Liu, J., Zhang, W., Ni, Y., Wang, W., Li, Z.: Uav-human: A large benchmark for human behavior understanding with unmanned aerial vehicles. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16266–16275 (2021)

    Google Scholar 

  44. Liu, Z., et al.: Video swin transformer. arXiv preprint arXiv:2106.13230 (2021)

  45. Lloyd, D.B., Govindaraju, N.K., Quammen, C., Molnar, S.E., Manocha, D.: Logarithmic perspective shadow maps. ACM Trans. Graph. (TOG) 27(4), 1–32 (2008)

    Article  Google Scholar 

  46. Mazzia, V., Angarano, S., Salvetti, F., Angelini, F., Chiaberge, M.: Action transformer: A self-attention model for short-time human action recognition. arXiv preprint arXiv:2107.00606 (2021)

  47. Mitchell, D.P., Netravali, A.N.: Reconstruction filters in computer-graphics. ACM Siggraph Comput. Graph. 22(4), 221–228 (1988)

    Article  Google Scholar 

  48. Mittal, P., Singh, R., Sharma, A.: Deep learning-based object detection in low-altitude uav datasets: a survey. Image Vis. Comput. 104, 104046 (2020)

    Article  Google Scholar 

  49. Monfort, M., et al.: Moments in time dataset: one million videos for event understanding. IEEE Trans. Pattern Anal. Mach. Intell. 42(2), 502–508 (2019)

    Article  Google Scholar 

  50. Ng, J.Y.H., Choi, J., Neumann, J., Davis, L.S.: Actionflownet: Learning motion representation for action recognition. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1616–1624. IEEE (2018)

    Google Scholar 

  51. Peng, H., Razi, A.: Fully autonomous UAV-based action recognition system using aerial imagery. In: Bebis, G. (ed.) ISVC 2020. LNCS, vol. 12509, pp. 276–290. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64556-4_22

    Chapter  Google Scholar 

  52. Perera, A.G., Law, Y.W., Chahl, J.: Drone-action: an outdoor recorded drone video dataset for action recognition. Drones 3(4), 82 (2019)

    Article  Google Scholar 

  53. Piccardi, M.: Background subtraction techniques: a review. In: 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No. 04CH37583). vol. 4, pp. 3099–3104. IEEE (2004)

    Google Scholar 

  54. Piergiovanni, A., Ryoo, M.S.: Representation flow for action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9945–9953 (2019)

    Google Scholar 

  55. Plizzari, C., Cannici, M., Matteucci, M.: Spatial temporal transformer network for skeleton-based action recognition. arXiv preprint arXiv:2012.06399 (2020)

  56. Reddy, B.S., Chatterji, B.N.: An fft-based technique for translation, rotation, and scale-invariant image registration. IEEE Trans. Image Process. 5(8), 1266–1271 (1996)

    Article  Google Scholar 

  57. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural. Inf. Process. Syst. 28, 91–99 (2015)

    Google Scholar 

  58. Ren, Z., Yan, J., Ni, B., Liu, B., Yang, X., Zha, H.: Unsupervised deep learning for optical flow estimation. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  59. Schlag, I., Irie, K., Schmidhuber, J.: Linear transformers are secretly fast weight programmers. In: International Conference on Machine Learning, pp. 9355–9366. PMLR (2021)

    Google Scholar 

  60. Sengupta, S., Jayaram, V., Curless, B., Seitz, S.M., Kemelmacher-Shlizerman, I.: Background matting: The world is your green screen. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2291–2300 (2020)

    Google Scholar 

  61. Shen, Z., Zhang, M., Zhao, H., Yi, S., Li, H.: Efficient attention: Attention with linear complexities. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3531–3539 (2021)

    Google Scholar 

  62. Shi, F., et al.: Star: Sparse transformer-based action recognition. arXiv preprint arXiv:2107.07089 (2021)

  63. Sigurdsson, G.A., Gupta, A., Schmid, C., Farhadi, A., Alahari, K.: Charades-ego: A large-scale dataset of paired third and first person videos. arXiv preprint arXiv:1804.09626 (2018)

  64. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. arXiv preprint arXiv:1406.2199 (2014)

  65. Sultani, W., Shah, M.: Human action recognition in drone videos using a few aerial training examples. Comput. Vis. Image Underst. 206, 103186 (2021)

    Article  Google Scholar 

  66. Tancik, M., et al.: Fourier features let networks learn high frequency functions in low dimensional domains. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) In: Advances in Neural Information Processing Systems. vol. 33, pp. 7537–7547. Curran Associates, Inc. (2020), https://proceedings.neurips.cc/paper/2020/file/55053683268957697aa39fba6f231c68-Paper.pdf

  67. Tran, D., Wang, H., Torresani, L., Feiszli, M.: Video classification with channel-separated convolutional networks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5552–5561 (2019)

    Google Scholar 

  68. Ulhaq, A., Yin, X., Zhang, Y., Gondal, I.: Action-02MCF: A robust space-time correlation filter for action recognition in clutter and adverse lighting conditions. In: Blanc-Talon, J., Distante, C., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2016. LNCS, vol. 10016, pp. 465–476. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48680-2_41

    Chapter  Google Scholar 

  69. Vaswani, A., et al.: Attention is all you need. In: Advances in neural information processing systems, pp. 5998–6008 (2017)

    Google Scholar 

  70. Wang, M., Deng, W.: Deep visual domain adaptation: a survey. Neurocomputing 312, 135–153 (2018)

    Article  Google Scholar 

  71. Wang, S.e.a.: Linformer: Self-attention with linear complexity. arXiv:2006.04768 (2020)

  72. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7794–7803 (2018)

    Google Scholar 

  73. Wang, X., Jabri, A., Efros, A.A.: Learning correspondence from the cycle-consistency of time. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2566–2576 (2019)

    Google Scholar 

  74. Xiong, Y., et al.: Nyströmformer: A nystöm-based algorithm for approximating self-attention. In: Proceedings of the. AAAI Conference on Artificial Intelligence. In: AAAI Conference on Artificial Intelligence. vol. 35, p. 14138. NIH Public Access (2021)

    Google Scholar 

  75. Xu, K., Qin, M., Sun, F., Wang, Y., Chen, Y., Ren, F.: Learning in the frequency domain. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1737–1746. IEEE Computer Society, Los Alamitos, CA, USA (2020). https://doi.org/10.1109/CVPR42600.2020.00181

  76. Yang, Y., Soatto, S.: Fda: Fourier domain adaptation for semantic segmentation. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4084–4094 (2020)

    Google Scholar 

  77. Zappella, L., Lladó, X., Salvi, J.: Motion segmentation: A review. Artificial Intelligence Research and Development, pp. 398–407 (2008)

    Google Scholar 

  78. Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International conference on machine learning, pp. 7354–7363. PMLR (2019)

    Google Scholar 

  79. Zhang, Z., Zhao, J., Zhang, D., Qu, C., Ke, Y., Cai, B.: Contour based forest fire detection using fft and wavelet. In: 2008 International Conference on Computer Science and Software Engineering, vol. 1, pp. 760–763. IEEE (2008)

    Google Scholar 

  80. Zhi, Y., Tong, Z., Wang, L., Wu, G.: Mgsampler: An explainable sampling strategy for video action recognition. arXiv preprint arXiv:2104.09952 (2021)

  81. Zhu, Y., Deng, C., Cao, H., Wang, H.: Object and background disentanglement for unsupervised cross-domain person re-identification. Neurocomputing 403, 88–97 (2020)

    Article  Google Scholar 

  82. Zou, Z., Shi, Z., Guo, Y., Ye, J.: Object detection in 20 years: A survey. arXiv preprint arXiv:1905.05055 (2019)

Download references

Acknowledgements

We thank Rohan Chandra for reviewing the paper. This research has been supported by ARO Grants W911NF1910069, W911NF2110026 and Army Cooperative Agreement W911NF2120076.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Divya Kothandaraman .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 4215 KB)

Supplementary material 2 (mp4 13100 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kothandaraman, D., Guan, T., Wang, X., Hu, S., Lin, M., Manocha, D. (2022). FAR: Fourier Aerial Video Recognition. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13697. Springer, Cham. https://doi.org/10.1007/978-3-031-19836-6_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19836-6_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19835-9

  • Online ISBN: 978-3-031-19836-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics