Abstract
We present an algorithm, Fourier Activity Recognition (FAR), for UAV video activity recognition. Our formulation uses a novel Fourier object disentanglement method to innately separate out the human agent (which is typically small) from the background. Our disentanglement technique operates in the frequency domain to characterize the extent of temporal change of spatial pixels, and exploits convolution-multiplication properties of Fourier transform to map this representation to the corresponding object-background entangled features obtained from the network. To encapsulate contextual information and long-range space-time dependencies, we present a novel Fourier Attention algorithm, which emulates the benefits of self-attention by modeling the weighted outer product in the frequency domain. Our Fourier attention formulation uses much fewer computations than self-attention. We have evaluated our approach on multiple UAV datasets including UAV Human RGB, UAV Human Night, Drone Action, and NEC Drone. We demonstrate a relative improvement of 8.02%–38.69% in top-1 accuracy and up to 3 times faster over prior works.
The second and third authors contributed equally.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arnab, A., Dehghani, M., Heigold, G., Sun, C., Lučić, M., Schmid, C.: Vivit: A video vision transformer. arXiv preprint arXiv:2103.15691 (2021)
Barekatain, M., et al.: Okutama-action: An aerial view video dataset for concurrent human action detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp. 28–35 (2017)
Beauchemin, S.S., Barron, J.L.: The computation of optical flow. ACM Comput. Surveys (CSUR) 27(3), 433–466 (1995)
Benjdira, B., Bazi, Y., Koubaa, A., Ouni, K.: Unsupervised domain adaptation using generative adversarial networks for semantic segmentation of aerial images. Remote Sensing 11(11), 1369 (2019)
Bertasius, G., Wang, H., Torresani, L.: Is space-time attention all you need for video understanding? arXiv preprint arXiv:2102.05095 (2021)
Buijs, H., Pomerleau, A., Fournier, M., Tam, W.: Implementation of a fast fourier transform (fft) for image processing applications. IEEE Trans. Acoust. Speech Signal Process. 22(6), 420–424 (1974)
Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the kinetics dataset. In: proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6299–6308 (2017)
Chen, Y., Li, W., Sakaridis, C., Dai, D., Van Gool, L.: Domain adaptive faster r-cnn for object detection in the wild. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3339–3348 (2018)
Chéron, G., Laptev, I., Schmid, C.: P-cnn: Pose-based cnn features for action recognition. In: Proceedings of the IEEE international conference on computer vision, pp. 3218–3226 (2015)
Chi, L., Jiang, B., Mu, Y.: Fast fourier convolution. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 4479–4488. Curran Associates, Inc. (2020), https://proceedings.neurips.cc/paper/2020/file/2fd5d41ec6cfab47e32164d5624269b1-Paper.pdf
Choi, J.: Action recognition list of papers. In: https://github.com/jinwchoi/awesome-action-recognition
Choi, J., Gao, C., Messou, J.C., Huang, J.B.: Why can’t i dance in the mall? learning to mitigate scene bias in action recognition. arXiv preprint arXiv:1912.05534 (2019)
Choi, J., Sharma, G., Chandraker, M., Huang, J.B.: Unsupervised and semi-supervised domain adaptation for action recognition from drones. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1717–1726 (2020)
Chun, B.T., Bae, Y., Kim, T.Y.: Automatic text extraction in digital videos using fft and neural network. In: FUZZ-IEEE’99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No. 99CH36315), vol. 2, pp. 1112–1115. IEEE (1999)
Ding, M., Li, N., Song, Z., Zhang, R., Zhang, X., Zhou, H.: A lightweight action recognition method for unmanned-aerial-vehicle video. In: 2020 IEEE 3rd International Conference on Electronics and Communication Engineering (ICECE), pp. 181–185. IEEE (2020)
Dosovitskiy, A., et al.: Flownet: Learning optical flow with convolutional networks. In: Proceedings of the IEEE international conference on computer vision, pp. 2758–2766 (2015)
Du, D., et al.: The unmanned aerial vehicle benchmark: Object detection and tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 370–386 (2018)
Dundar, A., Shih, K.J., Garg, A., Pottorf, R., Tao, A., Catanzaro, B.: Unsupervised disentanglement of pose, appearance and background from images and videos. arXiv preprint arXiv:2001.09518 (2020)
Ellenfeld, M., Moosbauer, S., Cardenes, R., Klauck, U., Teutsch, M.: Deep fusion of appearance and frame differencing for motion segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4339–4349 (2021)
Fan, H., Xiong, B., Mangalam, K., Li, Y., Yan, Z., Malik, J., Feichtenhofer, C.: Multiscale vision transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6824–6835 (2021)
Feichtenhofer, C.: X3d: Expanding architectures for efficient video recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 203–213 (2020)
Feichtenhofer, C., Fan, H., Malik, J., He, K.: Slowfast networks for video recognition. In: Proceedings of the IEEE/CVF international conference on computer vision, pp. 6202–6211 (2019)
Feichtenhofer, C., Pinz, A., Zisserman, A.: Convolutional two-stream network fusion for video action recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition., pp. 1933–1941 (2016)
Frigo, M., Johnson, S.G.: Fftw: An adaptive software architecture for the fft. In: Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP’98 (Cat. No. 98CH36181). vol. 3, pp. 1381–1384. IEEE (1998)
Fu, J., et al.: Dual attention network for scene segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3146–3154 (2019)
Gammulle, H., Denman, S., Sridharan, S., Fookes, C.: Two stream lstm: A deep fusion framework for human action recognition. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 177–186. IEEE (2017)
Girdhar, R., Carreira, J., Doersch, C., Zisserman, A.: Video action transformer network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 244–253 (2019)
Gowda, S.N., Rohrbach, M., Sevilla-Lara, L.: Smart frame selection for action recognition. arXiv preprint arXiv:2012.10671 (2020)
Griffin, B.A., Corso, J.J.: Bubblenets: Learning to select the guidance frame in video object segmentation by deep sorting frames. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8914–8923 (2019)
Hara, K., Kataoka, H., Satoh, Y.: Can spatiotemporal 3D cnns retrace the history of 2d cnns and imagenet? In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp. 6546–6555 (2018)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778 (2016)
Hussein, N., Gavves, E., Smeulders, A.W.: Timeception for complex action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 254–263 (2019)
Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: Flownet 2.0: Evolution of optical flow estimation with deep networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2462–2470 (2017)
Jhuang, H., Gall, J., Zuffi, S., Schmid, C., Black, M.J.: Towards understanding action recognition. In: Proceedings of the IEEE international conference on computer vision, pp. 3192–3199 (2013)
Katharopoulos, A., Vyas, A., Pappas, N., Fleuret, F.: Transformers are rnns: Fast autoregressive transformers with linear attention. In: International Conference on Machine Learning, pp. 5156–5165. PMLR (2020)
Kim, Y.J., Awadalla, H.H.: Fastformers: Highly efficient transformer models for natural language understanding. arXiv preprint arXiv:2010.13382 (2020)
Korbar, B., Tran, D., Torresani, L.: Scsampler: Sampling salient clips from video for efficient action recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6232–6242 (2019)
Lavin, A., Gray, S.: Fast algorithms for convolutional neural networks. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 4013–4021. IEEE Computer Society, Los Alamitos, CA, USA (jun 2016). https://doi.org/10.1109/CVPR.2016.435
Lee, M., Lee, S., Son, S., Park, G., Kwak, N.: Motion feature network: fixed motion filter for action recognition. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 392–408. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_24
Lee-Thorp, J., Ainslie, J., Eckstein, I., Ontanon, S.: Fnet: Mixing tokens with fourier transforms (2021)
Li, K., Wu, Z., Peng, K.C., Ernst, J., Fu, Y.: Tell me where to look: Guided attention inference network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9215–9223 (2018)
Li, R., Su, J., Duan, C., Zheng, S.: Linear attention mechanism: An efficient attention for semantic segmentation. arXiv preprint arXiv:2007.14902 (2020)
Li, T., Liu, J., Zhang, W., Ni, Y., Wang, W., Li, Z.: Uav-human: A large benchmark for human behavior understanding with unmanned aerial vehicles. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16266–16275 (2021)
Liu, Z., et al.: Video swin transformer. arXiv preprint arXiv:2106.13230 (2021)
Lloyd, D.B., Govindaraju, N.K., Quammen, C., Molnar, S.E., Manocha, D.: Logarithmic perspective shadow maps. ACM Trans. Graph. (TOG) 27(4), 1–32 (2008)
Mazzia, V., Angarano, S., Salvetti, F., Angelini, F., Chiaberge, M.: Action transformer: A self-attention model for short-time human action recognition. arXiv preprint arXiv:2107.00606 (2021)
Mitchell, D.P., Netravali, A.N.: Reconstruction filters in computer-graphics. ACM Siggraph Comput. Graph. 22(4), 221–228 (1988)
Mittal, P., Singh, R., Sharma, A.: Deep learning-based object detection in low-altitude uav datasets: a survey. Image Vis. Comput. 104, 104046 (2020)
Monfort, M., et al.: Moments in time dataset: one million videos for event understanding. IEEE Trans. Pattern Anal. Mach. Intell. 42(2), 502–508 (2019)
Ng, J.Y.H., Choi, J., Neumann, J., Davis, L.S.: Actionflownet: Learning motion representation for action recognition. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1616–1624. IEEE (2018)
Peng, H., Razi, A.: Fully autonomous UAV-based action recognition system using aerial imagery. In: Bebis, G. (ed.) ISVC 2020. LNCS, vol. 12509, pp. 276–290. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64556-4_22
Perera, A.G., Law, Y.W., Chahl, J.: Drone-action: an outdoor recorded drone video dataset for action recognition. Drones 3(4), 82 (2019)
Piccardi, M.: Background subtraction techniques: a review. In: 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No. 04CH37583). vol. 4, pp. 3099–3104. IEEE (2004)
Piergiovanni, A., Ryoo, M.S.: Representation flow for action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9945–9953 (2019)
Plizzari, C., Cannici, M., Matteucci, M.: Spatial temporal transformer network for skeleton-based action recognition. arXiv preprint arXiv:2012.06399 (2020)
Reddy, B.S., Chatterji, B.N.: An fft-based technique for translation, rotation, and scale-invariant image registration. IEEE Trans. Image Process. 5(8), 1266–1271 (1996)
Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural. Inf. Process. Syst. 28, 91–99 (2015)
Ren, Z., Yan, J., Ni, B., Liu, B., Yang, X., Zha, H.: Unsupervised deep learning for optical flow estimation. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)
Schlag, I., Irie, K., Schmidhuber, J.: Linear transformers are secretly fast weight programmers. In: International Conference on Machine Learning, pp. 9355–9366. PMLR (2021)
Sengupta, S., Jayaram, V., Curless, B., Seitz, S.M., Kemelmacher-Shlizerman, I.: Background matting: The world is your green screen. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2291–2300 (2020)
Shen, Z., Zhang, M., Zhao, H., Yi, S., Li, H.: Efficient attention: Attention with linear complexities. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3531–3539 (2021)
Shi, F., et al.: Star: Sparse transformer-based action recognition. arXiv preprint arXiv:2107.07089 (2021)
Sigurdsson, G.A., Gupta, A., Schmid, C., Farhadi, A., Alahari, K.: Charades-ego: A large-scale dataset of paired third and first person videos. arXiv preprint arXiv:1804.09626 (2018)
Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. arXiv preprint arXiv:1406.2199 (2014)
Sultani, W., Shah, M.: Human action recognition in drone videos using a few aerial training examples. Comput. Vis. Image Underst. 206, 103186 (2021)
Tancik, M., et al.: Fourier features let networks learn high frequency functions in low dimensional domains. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) In: Advances in Neural Information Processing Systems. vol. 33, pp. 7537–7547. Curran Associates, Inc. (2020), https://proceedings.neurips.cc/paper/2020/file/55053683268957697aa39fba6f231c68-Paper.pdf
Tran, D., Wang, H., Torresani, L., Feiszli, M.: Video classification with channel-separated convolutional networks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5552–5561 (2019)
Ulhaq, A., Yin, X., Zhang, Y., Gondal, I.: Action-02MCF: A robust space-time correlation filter for action recognition in clutter and adverse lighting conditions. In: Blanc-Talon, J., Distante, C., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2016. LNCS, vol. 10016, pp. 465–476. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48680-2_41
Vaswani, A., et al.: Attention is all you need. In: Advances in neural information processing systems, pp. 5998–6008 (2017)
Wang, M., Deng, W.: Deep visual domain adaptation: a survey. Neurocomputing 312, 135–153 (2018)
Wang, S.e.a.: Linformer: Self-attention with linear complexity. arXiv:2006.04768 (2020)
Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7794–7803 (2018)
Wang, X., Jabri, A., Efros, A.A.: Learning correspondence from the cycle-consistency of time. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2566–2576 (2019)
Xiong, Y., et al.: Nyströmformer: A nystöm-based algorithm for approximating self-attention. In: Proceedings of the. AAAI Conference on Artificial Intelligence. In: AAAI Conference on Artificial Intelligence. vol. 35, p. 14138. NIH Public Access (2021)
Xu, K., Qin, M., Sun, F., Wang, Y., Chen, Y., Ren, F.: Learning in the frequency domain. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1737–1746. IEEE Computer Society, Los Alamitos, CA, USA (2020). https://doi.org/10.1109/CVPR42600.2020.00181
Yang, Y., Soatto, S.: Fda: Fourier domain adaptation for semantic segmentation. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4084–4094 (2020)
Zappella, L., Lladó, X., Salvi, J.: Motion segmentation: A review. Artificial Intelligence Research and Development, pp. 398–407 (2008)
Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International conference on machine learning, pp. 7354–7363. PMLR (2019)
Zhang, Z., Zhao, J., Zhang, D., Qu, C., Ke, Y., Cai, B.: Contour based forest fire detection using fft and wavelet. In: 2008 International Conference on Computer Science and Software Engineering, vol. 1, pp. 760–763. IEEE (2008)
Zhi, Y., Tong, Z., Wang, L., Wu, G.: Mgsampler: An explainable sampling strategy for video action recognition. arXiv preprint arXiv:2104.09952 (2021)
Zhu, Y., Deng, C., Cao, H., Wang, H.: Object and background disentanglement for unsupervised cross-domain person re-identification. Neurocomputing 403, 88–97 (2020)
Zou, Z., Shi, Z., Guo, Y., Ye, J.: Object detection in 20 years: A survey. arXiv preprint arXiv:1905.05055 (2019)
Acknowledgements
We thank Rohan Chandra for reviewing the paper. This research has been supported by ARO Grants W911NF1910069, W911NF2110026 and Army Cooperative Agreement W911NF2120076.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Supplementary material 2 (mp4 13100 KB)
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Kothandaraman, D., Guan, T., Wang, X., Hu, S., Lin, M., Manocha, D. (2022). FAR: Fourier Aerial Video Recognition. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13697. Springer, Cham. https://doi.org/10.1007/978-3-031-19836-6_37
Download citation
DOI: https://doi.org/10.1007/978-3-031-19836-6_37
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19835-9
Online ISBN: 978-3-031-19836-6
eBook Packages: Computer ScienceComputer Science (R0)