[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Ordinal Classification Using Single-Model Evidential Extreme Learning Machine

  • Conference paper
  • First Online:
Belief Functions: Theory and Applications (BELIEF 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13506))

Included in the following conference series:

Abstract

The extreme learning machine model for ordinal classification is extended to the uncertain case. Dealing with epistemic uncertainty by Dempster-Shafer theory, in this paper, the single-model multi-output extreme learning machine is learned from evidential training data. Taking both the uncertainty and the ordering relation of labels into consideration, given mass functions of training labels, different evidential encoding schemes for model output are proposed. On that basis, adopting the structure of a single extreme learning machine model with multiple output nodes, the construction procedure of evidential ordinal classification model is designed. According to the encoding mechanism and learning details, when there is no epistemic uncertainty in training labels, the proposed evidential ordinal method can be reduced to the traditional ordinal one. Experiments on artificial and UCI datasets illustrate the practical implementation and effectiveness of proposed evidential extreme learning machine for ordinal classification.

Supported by the Natural Science Foundation of Shandong Province ZR2021MF074 and the National Key R & D Program of China 2018AAA0101703

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gutierrez, P.A., Perez-Ortiz, M., Sanchez-Monedero, J., et al.: Ordinal regression methods: survey and experimental study. IEEE Trans. Knowl. Data Eng. 28(1), 127–146 (2016)

    Article  Google Scholar 

  2. Xiao, Y., Li, X., Liu, B., et al.: Multi-view support vector ordinal regression with data uncertainty. Inf. Sci. 589, 516–530 (2022)

    Article  Google Scholar 

  3. Lucas, K., Lisa, H., Torsten, H., et al.: Deep and interpretable regression models for ordinal outcomes. Pattern Recogn. 122, 108263 (2022)

    Google Scholar 

  4. Destercke, S.: On the median in imprecise ordinal problems. Ann. Oper. Res. 256(2), 375–392 (2017)

    Article  MathSciNet  Google Scholar 

  5. Destercke, S., Yang, G.: Cautious ordinal classification by binary decomposition. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014. LNCS (LNAI), vol. 8724, pp. 323–337. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44848-9_21

    Chapter  Google Scholar 

  6. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. In: Yager, R.R., Liu, L. (eds.) Classic Works of the Dempster-Shafer Theory of Belief Functions. Studies in Fuzziness and Soft Computing, vol. 219, pp. 57–72. Springer, Berlin, Heidelberg (2008). https://doi.org/10.1007/978-3-540-44792-4_3

    Chapter  Google Scholar 

  7. Shafer, V.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    Book  Google Scholar 

  8. He, Y.: An approach utilizing negation of extended-dimensional vector of disposing mass for ordinal evidences combination in a fuzzy environment. arXiv preprint arXiv:2104.05416 (2021)

  9. He, Y.: Ordinal relative belief entropy. arXiv preprint arXiv:2102.12575 (2021)

  10. Campagner, A., Ciucci, D., Denœux, T.: Belief functions and rough sets: survey and new insights. Int. J. Approximate Reasoning 143, 192–215 (2022)

    Article  MathSciNet  Google Scholar 

  11. Smets, P.: Decision making in the TBM: the necessity of the pignistic transformation. Int. J. Approximate Reasoning 38(2), 133–147 (2005)

    Article  MathSciNet  Google Scholar 

  12. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70(1–3), 489–501 (2006)

    Article  Google Scholar 

  13. Deng, W.Y., Zheng, Q.H., Lian, S., et al.: Ordinal extreme learning machine. Neurocomputing 74(1–3), 447–456 (2010)

    Article  Google Scholar 

  14. Ma, L., Denoeux, T.: Partial classification in the belief function framework. Knowl.-Based Syst. 214, 106742 (2021)

    Google Scholar 

  15. Dua, D., Graff, C.: UCI Machine Learning Repository. Irvine, CA: University of California, School of Information and Computer Science (2019). http://archive.ics.uci.edu/ml

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liyao Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, L., Wei, P., Sun, B. (2022). Ordinal Classification Using Single-Model Evidential Extreme Learning Machine. In: Le Hégarat-Mascle, S., Bloch, I., Aldea, E. (eds) Belief Functions: Theory and Applications. BELIEF 2022. Lecture Notes in Computer Science(), vol 13506. Springer, Cham. https://doi.org/10.1007/978-3-031-17801-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17801-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17800-9

  • Online ISBN: 978-3-031-17801-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics