Abstract
Recently, the pseudo-Newton method was proposed to solve the problem of finding the points for which the maximal modulus of a given polynomial over the unit disk is attained. In this paper, we propose a modification of this method, which relies on the use of fractional order derivatives. The proposed modification is evaluated twofold: visually via polynomiographs coloured according to the number of iterations, and numerically by using the convergence area index, the average number of iterations and generation time of polynomiographs. The experimental results show that the fractional pseudo-Newton method for some fractional orders behaves better in comparison to the standard algorithm.
W. Kotarski—Independent Researcher.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Akgül, A., Cordero, A., Torregrosa, J.: A fractional Newton method with \(2\alpha \)th-order of convergence and its stability. Appl. Math. Lett. 98, 344–351 (2019). https://doi.org/10.1016/j.aml.2019.06.028
Cordero, A., Girona, I., Torregrosa, J.: A variant of Chebyshev’s method with \(3\alpha \)th-order of convergence by using fractional derivatives. Symmetry 11(8), Article 1017 (2019). https://doi.org/10.3390/sym11081017
Erfanifar, R., Sayevand, K., Esmaeili, H.: On modified two-step iterative method in the fractional sense: some applications in real world phenomena. Int. J. Comput. Math. 97(10), 2109–2141 (2020). https://doi.org/10.1080/00207160.2019.1683547
Gdawiec, K., Kotarski, W.: Polynomiography for the polynomial infinity norm via Kalantari’s formula and nonstandard iterations. Appl. Math. Comput. 307, 17–30 (2017). https://doi.org/10.1016/j.amc.2017.02.038
Gdawiec, K., Kotarski, W., Lisowska, A.: Visual analysis of the Newton’s method with fractional order derivatives. Symmetry 11(9), Article ID 1143 (2019). https://doi.org/10.3390/sym11091143
Gdawiec, K., Kotarski, W., Lisowska, A.: Newton’s method with fractional derivatives and various iteration processes via visual analysis. Numer. Algorithms 86(3), 953–1010 (2020). https://doi.org/10.1007/s11075-020-00919-4
Kalantari, B.: A geometric modulus principle for polynomials. Am. Math. Mon. 118(10), 931–935 (2011). https://doi.org/10.4169/amer.math.monthly.118.10.931
Kalantari, B.: A necessary and sufficient condition for local maxima of polynomial modulus over unit disc. arXiv:1605.00621 (2016)
Kalantari, B., Andreev, F., Lau, C.: Characterization of local optima of polynomial modulus over a disc. Numer. Algorithms 3, 1–15 (2021). https://doi.org/10.1007/s11075-021-01208-4
Miller, K., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. John Wiley & Sons Inc., New York (1993)
Samko, S., Kilbas, A., Marichev, O.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, Amsterdam (1993)
Usurelu, G., Bejenaru, A., Postolache, M.: Newton-like methods and polynomiographic visualization of modified Thakur process. Int. J. Comput. Math. 98(5), 1049–1068 (2021). https://doi.org/10.1080/00207160.2020.1802017
Ypma, T.: Historical development of Newton-Raphson method. SIAM Rev. 37(4), 531–551 (1995). https://doi.org/10.1137/1037125
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Gdawiec, K., Lisowska, A., Kotarski, W. (2022). Pseudo-Newton Method with Fractional Order Derivatives. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2022. ICCS 2022. Lecture Notes in Computer Science, vol 13351. Springer, Cham. https://doi.org/10.1007/978-3-031-08754-7_22
Download citation
DOI: https://doi.org/10.1007/978-3-031-08754-7_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-08753-0
Online ISBN: 978-3-031-08754-7
eBook Packages: Computer ScienceComputer Science (R0)