[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Pseudo-Newton Method with Fractional Order Derivatives

  • Conference paper
  • First Online:
Computational Science – ICCS 2022 (ICCS 2022)

Abstract

Recently, the pseudo-Newton method was proposed to solve the problem of finding the points for which the maximal modulus of a given polynomial over the unit disk is attained. In this paper, we propose a modification of this method, which relies on the use of fractional order derivatives. The proposed modification is evaluated twofold: visually via polynomiographs coloured according to the number of iterations, and numerically by using the convergence area index, the average number of iterations and generation time of polynomiographs. The experimental results show that the fractional pseudo-Newton method for some fractional orders behaves better in comparison to the standard algorithm.

W. Kotarski—Independent Researcher.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akgül, A., Cordero, A., Torregrosa, J.: A fractional Newton method with \(2\alpha \)th-order of convergence and its stability. Appl. Math. Lett. 98, 344–351 (2019). https://doi.org/10.1016/j.aml.2019.06.028

    Article  MathSciNet  MATH  Google Scholar 

  2. Cordero, A., Girona, I., Torregrosa, J.: A variant of Chebyshev’s method with \(3\alpha \)th-order of convergence by using fractional derivatives. Symmetry 11(8), Article 1017 (2019). https://doi.org/10.3390/sym11081017

  3. Erfanifar, R., Sayevand, K., Esmaeili, H.: On modified two-step iterative method in the fractional sense: some applications in real world phenomena. Int. J. Comput. Math. 97(10), 2109–2141 (2020). https://doi.org/10.1080/00207160.2019.1683547

    Article  MathSciNet  MATH  Google Scholar 

  4. Gdawiec, K., Kotarski, W.: Polynomiography for the polynomial infinity norm via Kalantari’s formula and nonstandard iterations. Appl. Math. Comput. 307, 17–30 (2017). https://doi.org/10.1016/j.amc.2017.02.038

    Article  MathSciNet  MATH  Google Scholar 

  5. Gdawiec, K., Kotarski, W., Lisowska, A.: Visual analysis of the Newton’s method with fractional order derivatives. Symmetry 11(9), Article ID 1143 (2019). https://doi.org/10.3390/sym11091143

  6. Gdawiec, K., Kotarski, W., Lisowska, A.: Newton’s method with fractional derivatives and various iteration processes via visual analysis. Numer. Algorithms 86(3), 953–1010 (2020). https://doi.org/10.1007/s11075-020-00919-4

    Article  MathSciNet  MATH  Google Scholar 

  7. Kalantari, B.: A geometric modulus principle for polynomials. Am. Math. Mon. 118(10), 931–935 (2011). https://doi.org/10.4169/amer.math.monthly.118.10.931

    Article  MathSciNet  MATH  Google Scholar 

  8. Kalantari, B.: A necessary and sufficient condition for local maxima of polynomial modulus over unit disc. arXiv:1605.00621 (2016)

  9. Kalantari, B., Andreev, F., Lau, C.: Characterization of local optima of polynomial modulus over a disc. Numer. Algorithms 3, 1–15 (2021). https://doi.org/10.1007/s11075-021-01208-4

    Article  MATH  Google Scholar 

  10. Miller, K., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. John Wiley & Sons Inc., New York (1993)

    MATH  Google Scholar 

  11. Samko, S., Kilbas, A., Marichev, O.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, Amsterdam (1993)

    MATH  Google Scholar 

  12. Usurelu, G., Bejenaru, A., Postolache, M.: Newton-like methods and polynomiographic visualization of modified Thakur process. Int. J. Comput. Math. 98(5), 1049–1068 (2021). https://doi.org/10.1080/00207160.2020.1802017

    Article  MathSciNet  MATH  Google Scholar 

  13. Ypma, T.: Historical development of Newton-Raphson method. SIAM Rev. 37(4), 531–551 (1995). https://doi.org/10.1137/1037125

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Gdawiec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gdawiec, K., Lisowska, A., Kotarski, W. (2022). Pseudo-Newton Method with Fractional Order Derivatives. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2022. ICCS 2022. Lecture Notes in Computer Science, vol 13351. Springer, Cham. https://doi.org/10.1007/978-3-031-08754-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08754-7_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08753-0

  • Online ISBN: 978-3-031-08754-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics