Abstract
Alzheimer’s disease (AD) is a brain ailment that is irreversible and has an initial warning sign, such as memory cognitive functioning loss. The precise and early diagnosis of AD is exceedingly vital for patient care. The study proposed a deep convolutional neural network (CNN) model for diagnosing AD state using brain magnetic resonance imaging (MRI). The authors’ concentrated on a binary classification decision for brain MRI and observed better results compared to the other state-of-the-art studies, with an accuracy of 0.9938, sensitivity 0.9890, specificity 0.9974, precision 0.9970 and F1 score of 0.9932. The experiment was conducted on a 4800 image dataset (Kaggle) using Google collaboratory GPU, Keras library with TensorFlow backend.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alzheimer’s Association: 2018 Alzheimer’s disease facts and figures. Alzheimer’s Dementia 14(3), 367–429 (2018)
Prince, M.J., Wimo, A., Guerchet, M.M., Ali, G.C., Wu, Y.T., Prina, M.: World Alzheimer Report 2015-The Global Impact of Dementia: an analysis of prevalence, incidence, cost and trends (2015)
The difference between a healthy brain and a brain affected by Alzheimer’s. https://www.brightfocus.org/. Accessed 7 July 2021
Altinkaya, E., Polat, K., Barakli, B.: Detection of Alzheimer’s disease and dementia states based on deep learning from MRI images: a comprehensive review. J. Inst. Electron. Comput. 1(1), 39–53 (2020)
Ghosh, S., Bandyopadhyay, A., Sahay, S., Ghosh, R., Kundu, I., Santosh, K.C.: Colorectal histology tumor detection using ensemble deep neural network. Eng. Appl. Artif. Intell. 100, 104202 (2021)
Santosh, K.C., Das, N., Ghosh, S.: Deep Learning Models for Medical Imaging. Elsevier (2021)
Santosh, K.C., Gaur, L.: Artificial Intelligence and Machine Learning in Public Healthcare. Springer, Heidelberg (2021)
Biswas, M., Kaiser, M.S., Mahmud, M., Al Mamun, S., Hossain, M.S., Rahman, M.A.: An XAI based autism detection: the context behind the detection. In: Mahmud, M., Kaiser, M.S., Vassanelli, S., Dai, Q., Zhong, N. (eds.) BI 2021. LNCS (LNAI), vol. 12960, pp. 448–459. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86993-9_40
Biswas, M., et al.: Indoor navigation support system for patients with neurodegenerative diseases. In: Mahmud, M., Kaiser, M.S., Vassanelli, S., Dai, Q., Zhong, N. (eds.) BI 2021. LNCS (LNAI), vol. 12960, pp. 411–422. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86993-9_37
Ebrahimi, A., Luo, S., Chiong, R., Alzheimer’s Disease Neuroimaging Initiative: Deep sequence modelling for Alzheimer’s disease detection using MRI. Comput. Biol. Med. 134, 104537 (2021). https://doi.org/10.1016/j.compbiomed.2021.104537
Alom, M.Z., et al.: A state-of-the-art survey on deep learning theory and architectures. Electronics 8(3), 292 (2019)
Raghavaiah, P., Varadarajan, S.: A CAD system design to Diagnosize Alzheimers disease from MRI brain images using optimal deep neural network. Multimed. Tools Appl. 80(17), 26411–26428 (2021). https://doi.org/10.1007/s11042-021-10928-7
Kang, L., Jiang, J., Huang, J., Zhang, T.: Identifying early mild cognitive impairment by multi-modality MRI-based deep learning. Front. Aging Neurosci. 12, 206 (2020)
Yamanakkanavar, N., Choi, J.Y., Lee, B.: MRI segmentation and classification of human brain using deep learning for diagnosis of Alzheimer’s disease: a survey. Sensors 20(11), 3243 (2020)
Qiu, S., et al.: Development and validation of an interpretable deep learning framework for Alzheimer’s disease classification. Brain 143(6), 1920–1933 (2020)
Venugopalan, J., Tong, L., Hassanzadeh, H.R., Wang, M.D.: Multimodal deep learning models for early detection of Alzheimer’s disease stage. Sci. Rep. 11(1), 1–13 (2021)
Pelka, O., et al.: Sociodemographic data and APOE-4 augmentation for MRI-based detection of amnestic mild cognitive impairment using deep learning systems. PLoS ONE 15(9), e0236868 (2020)
Hussain, E., Hasan, M., Hassan, S.Z., Azmi, T.H., Rahman, M.A., Parvez, M.Z.: Deep learning based binary classification for Alzheimer’s disease detection using brain MRI images. In: 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 1115–1120. IEEE, November 2020
Hosseini-Asl, E., Keynton, R., El-Baz, A.: Alzheimer’s disease diagnostics by adaptation of 3D convolutional network. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 126–130. IEEE, September 2016
Basheera, S., Ram, M.S.S.: Convolution neural network-based Alzheimer’s disease classification using hybrid enhanced independent component analysis based segmented gray matter of T2 weighted magnetic resonance imaging with clinical valuation. Alzheimer’s Dementia Transl. Res. Clin. Interv. 5, 974–986 (2019)
Taheri Gorji, H., Kaabouch, N.: A deep learning approach for diagnosis of mild cognitive impairment based on MRI images. Brain Sci. 9(9), 217 (2019)
Suk, H.I., Lee, S.W., Shen, D.: Deep sparse multi-task learning for feature selection in Alzheimer’s disease diagnosis. Brain Struct. Funct. 221(5), 2569–2587 (2016)
Kundaram, S.S., Pathak, K.C.: Deep learning-based Alzheimer disease detection. In: Nath, V., Mandal, J.K. (eds.) Proceedings of the Fourth International Conference on Microelectronics, Computing and Communication Systems. LNEE, vol. 673, pp. 587–597. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-5546-6_50
Cui, R., Liu, M., Li, G.: Longitudinal analysis for Alzheimer’s disease diagnosis using RNN. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 1398–1401. IEEE, April 2018
Shi, J., Zheng, X., Li, Y., Zhang, Q., Ying, S.: Multimodal neuroimaging feature learning with multimodal stacked deep polynomial networks for diagnosis of Alzheimer’s disease. IEEE J. Biomed. Health Inform. 22(1), 173–183 (2017)
Liu, M., Cheng, D., Yan, W., Initiative, A.D.N.: Classification of Alzheimer’s disease by combination of convolutional and recurrent neural networks using FDG-PET images. Front. Neuroinform. 12, 35 (2018)
https://www.kaggle.com/tourist55/alzheimers-dataset-4-class-of-images. Accessed 5 July 2021
Li, H., Habes, M., Wolk, D.A., Fan, Y., Initiative, A.D.N.: A deep learning model for early prediction of Alzheimer’s disease dementia based on hippocampal magnetic resonance imaging data. Alzheimer’s Dementia 15(8), 1059–1070 (2019)
Haque, S.: A deep learning model in the detection of Alzheimer disease. Turkish J. Comput. Math. Educ. (TURCOMAT) 12(10), 4013–4022 (2021)
Santosh, K.C., et al. (eds.): Medical Imaging: Artificial Intelligence, Image Recognition, and Machine Learning Techniques. CRC Press (2019)
Ruikar, D.D., Sawat, D.D., Santosh, K.C.: A systematic review of 3D imaging in biomedical applications. Med. Imaging 154–181 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Biswas, M., Mahbub, M.K., Miah, M.A.M. (2022). An Enhanced Deep Convolution Neural Network Model to Diagnose Alzheimer’s Disease Using Brain Magnetic Resonance Imaging. In: Santosh, K., Hegadi, R., Pal, U. (eds) Recent Trends in Image Processing and Pattern Recognition. RTIP2R 2021. Communications in Computer and Information Science, vol 1576. Springer, Cham. https://doi.org/10.1007/978-3-031-07005-1_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-07005-1_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-07004-4
Online ISBN: 978-3-031-07005-1
eBook Packages: Computer ScienceComputer Science (R0)