[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

An Enhanced Deep Convolution Neural Network Model to Diagnose Alzheimer’s Disease Using Brain Magnetic Resonance Imaging

  • Conference paper
  • First Online:
Recent Trends in Image Processing and Pattern Recognition (RTIP2R 2021)

Abstract

Alzheimer’s disease (AD) is a brain ailment that is irreversible and has an initial warning sign, such as memory cognitive functioning loss. The precise and early diagnosis of AD is exceedingly vital for patient care. The study proposed a deep convolutional neural network (CNN) model for diagnosing AD state using brain magnetic resonance imaging (MRI). The authors’ concentrated on a binary classification decision for brain MRI and observed better results compared to the other state-of-the-art studies, with an accuracy of 0.9938, sensitivity 0.9890, specificity 0.9974, precision 0.9970 and F1 score of 0.9932. The experiment was conducted on a 4800 image dataset (Kaggle) using Google collaboratory GPU, Keras library with TensorFlow backend.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 55.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alzheimer’s Association: 2018 Alzheimer’s disease facts and figures. Alzheimer’s Dementia 14(3), 367–429 (2018)

    Google Scholar 

  2. Prince, M.J., Wimo, A., Guerchet, M.M., Ali, G.C., Wu, Y.T., Prina, M.: World Alzheimer Report 2015-The Global Impact of Dementia: an analysis of prevalence, incidence, cost and trends (2015)

    Google Scholar 

  3. The difference between a healthy brain and a brain affected by Alzheimer’s. https://www.brightfocus.org/. Accessed 7 July 2021

  4. Altinkaya, E., Polat, K., Barakli, B.: Detection of Alzheimer’s disease and dementia states based on deep learning from MRI images: a comprehensive review. J. Inst. Electron. Comput. 1(1), 39–53 (2020)

    Google Scholar 

  5. Ghosh, S., Bandyopadhyay, A., Sahay, S., Ghosh, R., Kundu, I., Santosh, K.C.: Colorectal histology tumor detection using ensemble deep neural network. Eng. Appl. Artif. Intell. 100, 104202 (2021)

    Google Scholar 

  6. Santosh, K.C., Das, N., Ghosh, S.: Deep Learning Models for Medical Imaging. Elsevier (2021)

    Google Scholar 

  7. Santosh, K.C., Gaur, L.: Artificial Intelligence and Machine Learning in Public Healthcare. Springer, Heidelberg (2021)

    Book  Google Scholar 

  8. Biswas, M., Kaiser, M.S., Mahmud, M., Al Mamun, S., Hossain, M.S., Rahman, M.A.: An XAI based autism detection: the context behind the detection. In: Mahmud, M., Kaiser, M.S., Vassanelli, S., Dai, Q., Zhong, N. (eds.) BI 2021. LNCS (LNAI), vol. 12960, pp. 448–459. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86993-9_40

  9. Biswas, M., et al.: Indoor navigation support system for patients with neurodegenerative diseases. In: Mahmud, M., Kaiser, M.S., Vassanelli, S., Dai, Q., Zhong, N. (eds.) BI 2021. LNCS (LNAI), vol. 12960, pp. 411–422. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86993-9_37

  10. Ebrahimi, A., Luo, S., Chiong, R., Alzheimer’s Disease Neuroimaging Initiative: Deep sequence modelling for Alzheimer’s disease detection using MRI. Comput. Biol. Med. 134, 104537 (2021). https://doi.org/10.1016/j.compbiomed.2021.104537

  11. Alom, M.Z., et al.: A state-of-the-art survey on deep learning theory and architectures. Electronics 8(3), 292 (2019)

    Article  Google Scholar 

  12. Raghavaiah, P., Varadarajan, S.: A CAD system design to Diagnosize Alzheimers disease from MRI brain images using optimal deep neural network. Multimed. Tools Appl. 80(17), 26411–26428 (2021). https://doi.org/10.1007/s11042-021-10928-7

    Article  Google Scholar 

  13. Kang, L., Jiang, J., Huang, J., Zhang, T.: Identifying early mild cognitive impairment by multi-modality MRI-based deep learning. Front. Aging Neurosci. 12, 206 (2020)

    Article  Google Scholar 

  14. Yamanakkanavar, N., Choi, J.Y., Lee, B.: MRI segmentation and classification of human brain using deep learning for diagnosis of Alzheimer’s disease: a survey. Sensors 20(11), 3243 (2020)

    Article  Google Scholar 

  15. Qiu, S., et al.: Development and validation of an interpretable deep learning framework for Alzheimer’s disease classification. Brain 143(6), 1920–1933 (2020)

    Article  Google Scholar 

  16. Venugopalan, J., Tong, L., Hassanzadeh, H.R., Wang, M.D.: Multimodal deep learning models for early detection of Alzheimer’s disease stage. Sci. Rep. 11(1), 1–13 (2021)

    Article  Google Scholar 

  17. Pelka, O., et al.: Sociodemographic data and APOE-4 augmentation for MRI-based detection of amnestic mild cognitive impairment using deep learning systems. PLoS ONE 15(9), e0236868 (2020)

    Google Scholar 

  18. Hussain, E., Hasan, M., Hassan, S.Z., Azmi, T.H., Rahman, M.A., Parvez, M.Z.: Deep learning based binary classification for Alzheimer’s disease detection using brain MRI images. In: 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 1115–1120. IEEE, November 2020

    Google Scholar 

  19. Hosseini-Asl, E., Keynton, R., El-Baz, A.: Alzheimer’s disease diagnostics by adaptation of 3D convolutional network. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 126–130. IEEE, September 2016

    Google Scholar 

  20. Basheera, S., Ram, M.S.S.: Convolution neural network-based Alzheimer’s disease classification using hybrid enhanced independent component analysis based segmented gray matter of T2 weighted magnetic resonance imaging with clinical valuation. Alzheimer’s Dementia Transl. Res. Clin. Interv. 5, 974–986 (2019)

    Google Scholar 

  21. Taheri Gorji, H., Kaabouch, N.: A deep learning approach for diagnosis of mild cognitive impairment based on MRI images. Brain Sci. 9(9), 217 (2019)

    Article  Google Scholar 

  22. Suk, H.I., Lee, S.W., Shen, D.: Deep sparse multi-task learning for feature selection in Alzheimer’s disease diagnosis. Brain Struct. Funct. 221(5), 2569–2587 (2016)

    Article  Google Scholar 

  23. Kundaram, S.S., Pathak, K.C.: Deep learning-based Alzheimer disease detection. In: Nath, V., Mandal, J.K. (eds.) Proceedings of the Fourth International Conference on Microelectronics, Computing and Communication Systems. LNEE, vol. 673, pp. 587–597. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-5546-6_50

  24. Cui, R., Liu, M., Li, G.: Longitudinal analysis for Alzheimer’s disease diagnosis using RNN. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 1398–1401. IEEE, April 2018

    Google Scholar 

  25. Shi, J., Zheng, X., Li, Y., Zhang, Q., Ying, S.: Multimodal neuroimaging feature learning with multimodal stacked deep polynomial networks for diagnosis of Alzheimer’s disease. IEEE J. Biomed. Health Inform. 22(1), 173–183 (2017)

    Article  Google Scholar 

  26. Liu, M., Cheng, D., Yan, W., Initiative, A.D.N.: Classification of Alzheimer’s disease by combination of convolutional and recurrent neural networks using FDG-PET images. Front. Neuroinform. 12, 35 (2018)

    Article  Google Scholar 

  27. https://www.kaggle.com/tourist55/alzheimers-dataset-4-class-of-images. Accessed 5 July 2021

  28. Li, H., Habes, M., Wolk, D.A., Fan, Y., Initiative, A.D.N.: A deep learning model for early prediction of Alzheimer’s disease dementia based on hippocampal magnetic resonance imaging data. Alzheimer’s Dementia 15(8), 1059–1070 (2019)

    Article  Google Scholar 

  29. Haque, S.: A deep learning model in the detection of Alzheimer disease. Turkish J. Comput. Math. Educ. (TURCOMAT) 12(10), 4013–4022 (2021)

    Google Scholar 

  30. Santosh, K.C., et al. (eds.): Medical Imaging: Artificial Intelligence, Image Recognition, and Machine Learning Techniques. CRC Press (2019)

    Google Scholar 

  31. Ruikar, D.D., Sawat, D.D., Santosh, K.C.: A systematic review of 3D imaging in biomedical applications. Med. Imaging 154–181 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milon Biswas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Biswas, M., Mahbub, M.K., Miah, M.A.M. (2022). An Enhanced Deep Convolution Neural Network Model to Diagnose Alzheimer’s Disease Using Brain Magnetic Resonance Imaging. In: Santosh, K., Hegadi, R., Pal, U. (eds) Recent Trends in Image Processing and Pattern Recognition. RTIP2R 2021. Communications in Computer and Information Science, vol 1576. Springer, Cham. https://doi.org/10.1007/978-3-031-07005-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07005-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07004-4

  • Online ISBN: 978-3-031-07005-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics