[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Efficient Algorithms for Scheduling Parallel Jobs with Interval Constraints in Clouds

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications (COCOA 2021)

Abstract

Given a set of time slots and jobs, each of which has a degree of parallelism, an interval constraint (typically an arrival time and a deadline), and a processing time, we consider the problem of minimizing the number of machines for scheduling all the jobs while satisfying the constraints. This paper starts with a Linear Programming (LP) formulation and argues that its decision version is with an integral polyhedron. Meanwhile, we determine the problem’s feasibility with the LP, whether the given jobs can be accommodated by a given number of machines over allocated time slots, based on the property of the integrality. Then, we show that the feasibility leads to an LP-based algorithm, in which the optimal solution can be obtained in polynomial time. Moreover, our algorithm can also optimally compute a schedule to the problem rather than merely determining the minimum number of required machines, which compares favorably to the Earliest Deadline First (EDF) algorithm and the Least Laxity First (LLF) algorithm in solution quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Azar, Y., Cohen, S.: An improved algorithm for online machine minimization. Oper. Res. Lett. 46(1), 128–133 (2018)

    Article  MathSciNet  Google Scholar 

  2. van Bevern, R., Niedermeier, R., Suchý, O.: A parameterized complexity view on non-preemptively scheduling interval-constrained jobs: few machines, small looseness, and small slack. J. Scheduling 20(3), 255–265 (2016). https://doi.org/10.1007/s10951-016-0478-9

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, C., Zhang, H., Xu, Y.: Online machine minimization with lookahead. J. Comb. Optim. (2020). https://doi.org/10.1007/s10878-020-00633-w

  4. Chen, L., Megow, N., Schewior, K.: An \(\cal{O}\)(log m)-competitive algorithm for online machine minimization. SIAM J. Comput. 47(6), 2057–2077 (2018)

    Article  MathSciNet  Google Scholar 

  5. Chuzhoy, J., Guha, S., Khanna, S., Naor, J.S.: Machine minimization for scheduling jobs with interval constraints. In: 45th Annual IEEE Symposium on Foundations of Computer Science, pp. 81–90. IEEE (2004)

    Google Scholar 

  6. Cieliebak, M., Erlebach, T., Hennecke, F., Weber, B., Widmayer, P.: Scheduling with release times and deadlines on a minimum number of machines. In: Levy, J.-J., Mayr, E.W., Mitchell, J.C. (eds.) TCS 2004. IIFIP, vol. 155, pp. 209–222. Springer, Boston, (2004). https://doi.org/10.1007/1-4020-8141-3_18

    Chapter  MATH  Google Scholar 

  7. Dertouzos, M.L., Mok, A.K.: Multiprocessor online scheduling of hard-real-time tasks. IEEE Trans. Softw. Eng. 15(12), 1497–1506 (1989)

    Article  Google Scholar 

  8. Devanur, N., Makarychev, K., Panigrahi, D., Yaroslavtsev, G.: Online algorithms for machine minimization. CoRR abs/1403.0486 (2014)

    Google Scholar 

  9. Garey, M.R., Johnson, D.S.: Two-processor scheduling with start-times and deadlines. SIAM J. Comput. 6(3), 416–426 (1977)

    Article  MathSciNet  Google Scholar 

  10. George, L., Rivierre, N., Spuri, M.: Preemptive and non-preemptive real-time uniprocessor scheduling. In: Ph.D. thesis, Inria (1996)

    Google Scholar 

  11. Horn, W.: Some simple scheduling algorithms. Naval Res. Logistics Q. 21(1), 177–185 (1974)

    Article  MathSciNet  Google Scholar 

  12. Im, S., Moseley, B., Pruhs, K., Stein, C.: An \(\cal{O}\)(log log m)-competitive algorithm for online machine minimization. In: 2017 IEEE Real-Time Systems Symposium (RTSS), pp. 343–350. IEEE (2017)

    Google Scholar 

  13. Kao, M.-J., Chen, J.-J., Rutter, I., Wagner, D.: Competitive design and analysis for machine-minimizing job scheduling problem. In: Chao, K.-M., Hsu, T., Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676, pp. 75–84. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35261-4_11

    Chapter  MATH  Google Scholar 

  14. Korte, B., Vygen, J., Korte, B., Vygen, J.: Combinatorial optimization, vol. 2. Springer, Berlin (2012)

    Google Scholar 

  15. Lewis, H.R.: Computers and intractability: a guide to the theory of np-completeness Siam Rev. 24(1), 90 (1983)

    Google Scholar 

  16. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Courier Corporation, New York (1998)

    Google Scholar 

  17. Phillips, C.A., Stein, C., Torng, E., Wein, J.: Optimal time-critical scheduling via resource augmentation. In: Proceedings of the Twenty-ninth Annual ACM Symposium on Theory of Computing, pp. 140–149 (1997)

    Google Scholar 

  18. Raghavan, P., Tompson, C.D.: Randomized rounding: a technique for provably good algorithms and algorithmic proofs. Combinatorica 7(4), 365–374 (1987)

    Article  MathSciNet  Google Scholar 

  19. Saha, B.: Renting a cloud. In: IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2013), vol. 24, pp. 437–448. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2013)

    Google Scholar 

Download references

Acknowledgements

The authors are supported by Natural Science Foundation of China (No. 61772005), Outstanding Youth Innovation Team Project for Universities of Shandong Province (No. 2020KJN008), Natural Science Foundation of Fujian Province (No. 2020J01845) and Educational Research Project for Young and Middle-aged Teachers of Fujian Provincial Department of Education (No. JAT190613).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, X., Guo, L. (2021). Efficient Algorithms for Scheduling Parallel Jobs with Interval Constraints in Clouds. In: Du, DZ., Du, D., Wu, C., Xu, D. (eds) Combinatorial Optimization and Applications. COCOA 2021. Lecture Notes in Computer Science(), vol 13135. Springer, Cham. https://doi.org/10.1007/978-3-030-92681-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92681-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92680-9

  • Online ISBN: 978-3-030-92681-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics