[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

DeepHunter: A Graph Neural Network Based Approach for Robust Cyber Threat Hunting

  • Conference paper
  • First Online:
Security and Privacy in Communication Networks (SecureComm 2021)

Abstract

Cyber Threat hunting is a proactive search for known attack behaviors in the organizational information system. It is an important component to mitigate advanced persistent threats (APTs). However, the attack behaviors recorded in provenance data may not be completely consistent with the known attack behaviors. In this paper, we propose DeepHunter, a graph neural network (GNN) based graph pattern matching approach that can match provenance data against known attack behaviors in a robust way. Specifically, we design a graph neural network architecture with two novel networks: attribute embedding networks that could incorporate Indicators of Compromise (IOCs) information, and graph embedding networks that could capture the relationships between IOCs. To evaluate DeepHunter, we choose five real and synthetic APT attack scenarios. Results show that DeepHunter can hunt all attack behaviors, and the accuracy and robustness of DeepHunter outperform the state-of-the-art method, Poirot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Event tracing. https://docs.microsoft.com/en-us/windows/win32/etw/event-tracing-portal

  2. Causal, adaptive, distributed, and efficient tracing system (cadets) (2018). https://www.cl.cam.ac.uk/research/security/cadets/. Accessed 21 Sept 2020

  3. Trace: Preventing advanced persistent threat cyberattacks (2018). https://archive.sri.com/work/projects/trace-preventing-advanced-persisten-threat-cyberattacks. Accessed 21 Sept 2020

  4. Bai, Y., Ding, H., Bian, S., Chen, T., Sun, Y., Wang, W.: SimGNN: a neural network approach to fast graph similarity computation. In: Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, pp. 384–392 (2019)

    Google Scholar 

  5. Bai, Y., Ding, H., Gu, K., Sun, Y., Wang, W.: Learning-based efficient graph similarity computation via multi-scale convolutional set matching. In: AAAI, pp. 3219–3226 (2020)

    Google Scholar 

  6. Bates, A., Tian, D.J., Butler, K.R., Moyer, T.: Trustworthy whole-system provenance for the linux kernel. In: 24th \(\{\)USENIX\(\}\) Security Symposium (\(\{\)USENIX\(\}\) Security 15), pp. 319–334 (2015)

    Google Scholar 

  7. Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., Shah, R.: Signature verification using a “siamese” time delay neural network. In: Advances in Neural Information Processing Systems, pp. 737–744 (1994)

    Google Scholar 

  8. FireEye (2018). https://openioc.org. openIOC

  9. Fyrbiak, M., Wallat, S., Reinhard, S., Bissantz, N., Paar, C.: Graph similarity and its applications to hardware security. IEEE Trans. Comput. 69(4), 505–519 (2019)

    Article  MathSciNet  Google Scholar 

  10. Gehani, A., Tariq, D.: SPADE: support for provenance auditing in distributed environments. In: Narasimhan, P., Triantafillou, P. (eds.) Middleware 2012. LNCS, vol. 7662, pp. 101–120. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35170-9_6

    Chapter  Google Scholar 

  11. Gibson, T., Schuchardt, K., Stephan, E.G.: Application of named graphs towards custom provenance views. In: Workshop on the Theory and Practice of Provenance (2009)

    Google Scholar 

  12. Graeber, M.: Abusing Windows Management Instrumentation (WMI) to Build a Persistent, Asyncronous, and Fileless Backdoor. Black Hat, Las Vegas (2015)

    Google Scholar 

  13. Hassan, W.U., Bates, A., Marino, D.: Tactical provenance analysis for endpoint detection and response systems. In: Proceedings of the IEEE Symposium on Security and Privacy (2020)

    Google Scholar 

  14. Hassan, W.U., et al.: NODOZE: combatting threat alert fatigue with automated provenance triage. In: NDSS (2019)

    Google Scholar 

  15. Hassan, W.U., Noureddine, M.A., Datta, P., Bates, A.: OmegaLog: high-fidelity attack investigation via transparent multi-layer log analysis. In: Proceedings NDSS (2020)

    Google Scholar 

  16. Homayoun, S., Dehghantanha, A., Ahmadzadeh, M., Hashemi, S., Khayami, R.: Know abnormal, find evil: frequent pattern mining for ransomware threat hunting and intelligence. IEEE Trans. Emerg. Top. Comput. 8, 341–351 (2017)

    Article  Google Scholar 

  17. Hossain, M.N., et al.: \(\{\)SLEUTH\(\}\): real-time attack scenario reconstruction from \(\{\)COTS\(\}\) audit data. In: 26th \(\{\)USENIX\(\}\) Security Symposium (\(\{\)USENIX\(\}\) Security 17), pp. 487–504 (2017)

    Google Scholar 

  18. Hossain, M.N., Sheikhi, S., Sekar, R.: Combating dependence explosion in forensic analysis using alternative tag propagation semantics. In: 2020 IEEE Symposium on Security and Privacy (SP). IEEE (2020)

    Google Scholar 

  19. Husari, G., Al-Shaer, E., Ahmed, M., Chu, B., Niu, X.: TTPDrill: automatic and accurate extraction of threat actions from unstructured text of CTI sources. In: Proceedings of the 33rd Annual Computer Security Applications Conference, pp. 103–115 (2017)

    Google Scholar 

  20. Kaspar, R.: https://github.com/dzambon/graph-matching-toolkit (2018). mig-logcleaner-resurrected

  21. Khan, A., Wu, Y., Aggarwal, C.C., Yan, X.: NeMa: fast graph search with label similarity. Proc. VLDB Endowment 6(3), 181–192 (2013)

    Article  Google Scholar 

  22. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  23. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: International Conference on Machine Learning, pp. 1188–1196 (2014)

    Google Scholar 

  24. Lee, K.H., Zhang, X., Xu, D.: High accuracy attack provenance via binary-based execution partition. In: NDSS (2013)

    Google Scholar 

  25. Li, Y., Gu, C., Dullien, T., Vinyals, O., Kohli, P.: Graph matching networks for learning the similarity of graph structured objects. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning. Proceedings of Machine Learning Research, Long Beach, California, USA,09–15 Jun 2019, vol. 97, pp. 3835–3845. PMLR (2019). http://proceedings.mlr.press/v97/li19d.html

  26. Li, Y., Gu, C., Dullien, T., Vinyals, O., Kohli, P.: Graph matching networks for learning the similarity of graph structured objects. arXiv preprint arXiv:1904.12787 (2019)

  27. Liao, X., Yuan, K., Wang, X., Li, Z., Xing, L., Beyah, R.: Acing the IOC game: toward automatic discovery and analysis of open-source cyber threat intelligence. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 755–766 (2016)

    Google Scholar 

  28. Ma, S., Zhai, J., Wang, F., Lee, K.H., Zhang, X., Xu, D.: \(\{\)MPI\(\}\): Multiple perspective attack investigation with semantic aware execution partitioning. In: 26th \(\{\)USENIX\(\}\) Security Symposium (\(\{\)USENIX\(\}\) Security 17), pp. 1111–1128 (2017)

    Google Scholar 

  29. Manzoor, E., Milajerdi, S.M., Akoglu, L.: Fast memory-efficient anomaly detection in streaming heterogeneous graphs. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1035–1044 (2016)

    Google Scholar 

  30. Micro, T.: cryptocurrency Miner Uses WMI and EternalBlue To Spread Filelessly (2017). https://blog.trendmicro.com/trendlabs-security-intelligence/cryptocurrency-miner-uses-wmi-eternalblue-spread-filelessly/. Accessed 4 May 2020

  31. Milajerdi, S.M., Eshete, B., Gjomemo, R., Venkatakrishnan, V.: POIROT: aligning attack behavior with kernel audit records for cyber threat hunting. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, pp. 1795–1812 (2019)

    Google Scholar 

  32. Milajerdi, S.M., Gjomemo, R., Eshete, B., Sekar, R., Venkatakrishnan, V.: HOLMES: real-time apt detection through correlation of suspicious information flows. In: 2019 IEEE Symposium on Security and Privacy (SP), pp. 1137–1152. IEEE (2019)

    Google Scholar 

  33. MISP: Open Source Threat Intelligence Platform & Open Standards For Threat Information Sharing (2019). https://www.misp-project.org/

  34. Mitre: Structured Threat Information eXpression (STIX) (2018). https://stixproject.github.io

  35. Oprea, A., Li, Z., Yen, T.F., Chin, S.H., Alrwais, S.: Detection of early-stage enterprise infection by mining large-scale log data. In: 2015 45th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, pp. 45–56. IEEE (2015)

    Google Scholar 

  36. Pasquier, T., et al.: Practical whole-system provenance capture. In: Proceedings of the 2017 Symposium on Cloud Computing, pp. 405–418 (2017)

    Google Scholar 

  37. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32, pp. 8024–8035. Curran Associates, Inc. (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

  38. Pei, K., et al.: HERCULE: attack story reconstruction via community discovery on correlated log graph. In: Proceedings of the 32nd Annual Conference on Computer Security Applications, pp. 583–595 (2016)

    Google Scholar 

  39. Pienta, R., Tamersoy, A., Tong, H., Chau, D.H.: MAGE: matching approximate patterns in richly-attributed graphs. In: 2014 IEEE International Conference on Big Data (Big Data), pp. 585–590. IEEE (2014)

    Google Scholar 

  40. Pohly, D.J., McLaughlin, S., McDaniel, P., Butler, K.: Hi-fi: collecting high-fidelity whole-system provenance. In: Proceedings of the 28th Annual Computer Security Applications Conference, pp. 259–268 (2012)

    Google Scholar 

  41. Qureshi, R.J., Ramel, J.-Y., Cardot, H.: Graph based shapes representation and recognition. In: Escolano, F., Vento, M. (eds.) GbRPR 2007. LNCS, vol. 4538, pp. 49–60. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72903-7_5

    Chapter  MATH  Google Scholar 

  42. Řehůřek, R., Sojka, P.: Software framework for topic modelling with large corpora. In: Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, Valletta, Malta, pp. 45–50. ELRA, May 2010. http://is.muni.cz/publication/884893/en

  43. Riesen, K., Emmenegger, S., Bunke, H.: A novel software toolkit for graph edit distance computation. In: Kropatsch, W.G., Artner, N.M., Haxhimusa, Y., Jiang, X. (eds.) GbRPR 2013. LNCS, vol. 7877, pp. 142–151. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38221-5_15

    Chapter  MATH  Google Scholar 

  44. Smith, J. (2021). https://libraetd.lib.virginia.edu/public_view/5138jf509. Accessed 4 Mar 2021

  45. Socher, R., Chen, D., Manning, C.D., Ng, A.: Reasoning with neural tensor networks for knowledge base completion. In: Advances in Neural Information Processing Systems, pp. 926–934 (2013)

    Google Scholar 

  46. Song, W., Yin, H., Liu, C., Song, D.: DeepMem: learning graph neural network models for fast and robust memory forensic analysis. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pp. 606–618 (2018)

    Google Scholar 

  47. Sun, X., Dai, J., Liu, P., Singhal, A., Yen, J.: Using bayesian networks for probabilistic identification of zero-day attack paths. IEEE Trans. Inf. Forensics Secur. 13(10), 2506–2521 (2018)

    Article  Google Scholar 

  48. Tong, H., Faloutsos, C., Gallagher, B., Eliassi-Rad, T.: Fast best-effort pattern matching in large attributed graphs. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 737–746 (2007)

    Google Scholar 

  49. Wang, Q., et al.: You are what you do: Hunting stealthy malware via data provenance analysis. In: Proceedings of the Symposium on Network and Distributed System Security (NDSS) (2020)

    Google Scholar 

  50. Wang, S., et al.: Heterogeneous graph matching networks for unknown malware detection. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence, pp. 3762–3770. AAAI Press (2019)

    Google Scholar 

  51. Xiong, C., et al.: CONAN: a practical real-time APT detection system with high accuracy and efficiency. IEEE Trans. Depend. Secur. Comput. (2020)

    Google Scholar 

  52. Xu, X., Liu, C., Feng, Q., Yin, H., Song, L., Song, D.: Neural network-based graph embedding for cross-platform binary code similarity detection. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 363–376 (2017)

    Google Scholar 

  53. Zhu, Z., Dumitras, T.: ChainSmith: automatically learning the semantics of malicious campaigns by mining threat intelligence reports. In: 2018 IEEE European Symposium on Security and Privacy (EuroS&P), pp. 458–472. IEEE (2018)

    Google Scholar 

Download references

Acknowledgment

This work is supported by the Strategic Priority Research Program of Chinese Academy of Sciences, Grant No. XDC02040200.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Cai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wei, R., Cai, L., Zhao, L., Yu, A., Meng, D. (2021). DeepHunter: A Graph Neural Network Based Approach for Robust Cyber Threat Hunting. In: Garcia-Alfaro, J., Li, S., Poovendran, R., Debar, H., Yung, M. (eds) Security and Privacy in Communication Networks. SecureComm 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 398. Springer, Cham. https://doi.org/10.1007/978-3-030-90019-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90019-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90018-2

  • Online ISBN: 978-3-030-90019-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics