Abstract
Exquisitor is the state-of-the-art large-scale interactive learning approach for media exploration that utilizes user relevance feedback at its core and is capable of interacting with collections containing more than 100M multimedia items at sub-second latency. In this work, we propose improvements to Exquisitor that include new features extracted at shot level for semantic concepts, scenes and actions. In addition, we introduce extensions to the video summary interface providing a better overview of the shots. Finally, we replace a simple keyword search featured in the previous versions of the system with a semantic search based on modern contextual representations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Guðmundsson, G.Þ., Jónsson, B.Þ., Amsaleg, L.: A large-scale performance study of cluster-based high-dimensional indexing. In: Proceedings of International Workshop on Very-large-scale Multimedia Corpus, Mining and Retrieval (VLS-MCM), Firenze, Italy (2010)
Hara, K., Kataoka, H., Satoh, Y.: Can spatiotemporal 3D CNNs retrace the history of 2D CNNs and ImageNet? In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6546–6555 (2018)
Jónsson, B.Þ, Khan, O.S., Koelma, D.C., Rudinac, S., Worring, M., Zahálka, J.: Exquisitor at the video browser showdown 2020. In: Ro, Y.M., et al. (eds.) MMM 2020. LNCS, vol. 11962, pp. 796–802. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37734-2_72
Khan, O.S., et al.: Exquisitor at the video browser showdown 2021: relationships between semantic classifiers. In: Lokoč, J., et al. (eds.) MMM 2021. LNCS, vol. 12573, pp. 410–416. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67835-7_37
Khan, O.S., et al.: Interactive learning for multimedia at large. In: Jose, J.M., et al. (eds.) ECIR 2020. LNCS, vol. 12035, pp. 495–510. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45439-5_33
Kratochvíl, M., Veselý, P., Mejzlík, F., Lokoč, J.: SOM-Hunter: video browsing with relevance-to-SOM feedback loop. In: Ro, Y.M., et al. (eds.) MMM 2020. LNCS, vol. 11962, pp. 790–795. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37734-2_71
Lokoč, J., et al.: Interactive search or sequential browsing? A detailed analysis of the video browser showdown 2018. ACM TOMM 15(1), 1–18 (2019)
Lokoč, J., Kovalčík, G., Souček, T.: VIRET at video browser showdown 2020. In: Ro, Y.M., et al. (eds.) MMM 2020. LNCS, vol. 11962, pp. 784–789. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37734-2_70
Mettes, P., Koelma, D.C., Snoek, C.G.: The ImageNet shuffle: reorganized pre-training for video event detection. In: Proceedings of the 2016 ACM on International Conference on Multimedia Retrieval, ICMR 2016, pp. 175–182. Association for Computing Machinery, New York (2016)
Nguyen, P.A., Wu, J., Ngo, C.-W., Francis, D., Huet, B.: VIREO @ video browser showdown 2020. In: Ro, Y.M., et al. (eds.) MMM 2020. LNCS, vol. 11962, pp. 772–777. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37734-2_68
Ragnarsdóttir, H., et al.: Exquisitor: breaking the interaction barrier for exploration of 100 million images. In: Proceedings of ACM Multimedia, Nice, France (2019)
Rossetto, L., Giangreco, I., Gasser, R., Schuldt, H.: Competitive video retrieval with vitrivr at the video browser showdown 2018-final notes. arXiv preprint arXiv:1805.02371 (2018)
Rossetto, L., Schoeffmann, K., Bernstein, A.: Insights on the V3C2 dataset. CoRR arXiv:2105.01475 (2021)
Rossetto, L., Schuldt, H., Awad, G., Butt, A.A.: V3C – a research video collection. In: Kompatsiaris, I., Huet, B., Mezaris, V., Gurrin, C., Cheng, W.-H., Vrochidis, S. (eds.) MMM 2019. LNCS, vol. 11295, pp. 349–360. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05710-7_29
Sauter, L., Amiri Parian, M., Gasser, R., Heller, S., Rossetto, L., Schuldt, H.: Combining Boolean and multimedia retrieval in vitrivr for large-scale video search. In: Ro, Y.M., et al. (eds.) MMM 2020. LNCS, vol. 11962, pp. 760–765. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37734-2_66
Yuan, J., et al.: Tsinghua University at TRECVID 2004: shot boundary detection and high-level feature extraction. In: TRECVID. Citeseer (2004)
Zahálka, J., Rudinac, S., Jónsson, B.Þ., Koelma, D.C., Worring, M.: Blackthorn: large-scale interactive multimodal learning. IEEE TMM 20(3), 687–698 (2018)
Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million image database for scene recognition. IEEE Trans. Pattern Analy. Mach. Intell. 40, 1452–1464 (2017)
Acknowledgments
This work was supported by a Ph.D. grant from the IT University of Copenhagen and by the European Regional Development Fund (project Robotics for Industry 4.0, CZ.02.1.01/0.0/0.0/15 003/0000470).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Khan, O.S. et al. (2022). Exquisitor at the Video Browser Showdown 2022. In: Þór Jónsson, B., et al. MultiMedia Modeling. MMM 2022. Lecture Notes in Computer Science, vol 13142. Springer, Cham. https://doi.org/10.1007/978-3-030-98355-0_47
Download citation
DOI: https://doi.org/10.1007/978-3-030-98355-0_47
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-98354-3
Online ISBN: 978-3-030-98355-0
eBook Packages: Computer ScienceComputer Science (R0)