Abstract
Optical Music Recognition is the research field that investigates how to computationally read music notation from document images. State-of-the-art technologies, based on Convolutional Recurrent Neural Networks, typically follow an end-to-end approach that operates at the staff level; i.e., a single stage for completely processing the image of a single staff and retrieving the series of symbols that appear therein. This type of models demands a training set of sufficient size; however, the existence of many music manuscripts of reduced size questions the usefulness of this framework. In order to address such a drawback, we propose a sequential classification-based approach for music documents that processes sequentially the staff image. This is achieved by predicting, in the proper reading order, the symbol locations and their corresponding music-notation labels. Our experimental results report a noticeable improvement over previous attempts in scenarios of limited ground truth (for instance, decreasing the Symbol Error Rate from 70% to 37% with just 80 training staves), while still attaining a competitive performance as the training set size increases.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Music notation system used for the most of the XVI and XVII centuries in Europe.
References
Alfaro-Contreras, M., Valero-Mas, J.J.: Exploiting the two-dimensional nature of agnostic music notation for neural optical music recognition. Appl. Sci. 11(8), 3621 (2021)
Bainbridge, D., Bell, T.: The challenge of optical music recognition. Comput. Humanit. 35(2), 95–121 (2001)
Baró, A., Badal, C., Fornês, A.: Handwritten historical music recognition by sequence-to-sequence with attention mechanism. In: 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 205–210 (2020)
Bousmalis, K., Silberman, N., Dohan, D., Erhan, D., Krishnan, D.: Unsupervised pixel-level domain adaptation with generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3722–3731 (2017)
Calvo-Zaragoza, J., Jr, J.H., Pacha, A.: Understanding optical music recognition. ACM Comput. Surv. (CSUR) 53(4), 1–35 (2020)
Calvo-Zaragoza, J., Toselli, A.H., Vidal, E.: Handwritten music recognition for mensural notation: formulation, data and baseline results. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), vol. 1, pp. 1081–1086. IEEE (2017)
Calvo-Zaragoza, J., Toselli, A.H., Vidal, E.: Handwritten music recognition for mensural notation with convolutional recurrent neural networks. Pattern Recogn. Lett. 128, 115–121 (2019)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern recognition, pp. 248–255. IEEE (2009)
Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2030–2096 (2016)
Graves, A., Fernández, S., Gomez, F., Schmidhuber, J.: Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks. In: Proceedings of the 23rd International Conference on Machine Learning, ICML 2006, New York, NY, USA, pp. 369–376. ACM (2006)
Nibali, A., He, Z., Morgan, S., Prendergast, L.: Numerical coordinate regression with convolutional neural networks. Computer research repository abs/1801.07372 (2018). http://arxiv.org/abs/1801.07372
Nuñez-Alcover, A., de León, P.J.P., Calvo-Zaragoza, J.: Glyph and position classification of music symbols in early music manuscripts. In: Morales, A., Fierrez, J., Sánchez, J.S., Ribeiro, B. (eds.) IbPRIA 2019. LNCS, vol. 11868, pp. 159–168. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31321-0_14
Pacha, A., Eidenberger, H.: Towards a universal music symbol classifier. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), vol. 2, pp. 35–36. IEEE (2017)
Rebelo, A., Fujinaga, I., Paszkiewicz, F., Marçal, A., Guedes, C., Cardoso, J.: Optical music recognition: state-of-the-art and open issues. Int. J. Multimed. Inf. Retr. 1, 173–190 (2012)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Ríos-Vila, A., Calvo-Zaragoza, J., Iñesta, J.M.: Exploring the two-dimensional nature of music notation for score recognition with end-to-end approaches. In: 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 193–198 (2020)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015)
Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (2018)
Villarreal, M., Sánchez, J.A.: Handwritten music recognition improvement through language model re-interpretation for mensural notation. In: 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 199–204 (2020)
Wick, C., Puppe, F.: Experiments and detailed error-analysis of automatic square notation transcription of medieval music manuscripts using CNN/LSTM-networks and a neume dictionary. J. New Music Res. 1–19 (2021)
Acknowledgments
This work was supported by the Generalitat Valenciana through project GV/2020/030. Second author acknowledges the support from the Spanish Ministerio de Universidades through grant FPU19/04957.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Mas-Candela, E., Alfaro-Contreras, M., Calvo-Zaragoza, J. (2021). Sequential Next-Symbol Prediction for Optical Music Recognition. In: Lladós, J., Lopresti, D., Uchida, S. (eds) Document Analysis and Recognition – ICDAR 2021. ICDAR 2021. Lecture Notes in Computer Science(), vol 12823. Springer, Cham. https://doi.org/10.1007/978-3-030-86334-0_46
Download citation
DOI: https://doi.org/10.1007/978-3-030-86334-0_46
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-86333-3
Online ISBN: 978-3-030-86334-0
eBook Packages: Computer ScienceComputer Science (R0)