[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Fine-Tuning of Patterns Assignment to Subnetworks Increases the Capacity of an Attractor Network Ensemble

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12862))

Included in the following conference series:

  • 928 Accesses

Abstract

It is known that dividing an attractor network into a set of subnetworks whose connectivity is equivalent to the attractor network from which they come, and therefore with the same computational cost, increases the system’s recovery capacity. This opens the possibility of optimizing the assignment of pattern subsets to the ensemble modules. The patterns subsets assignment to the network modules can be considered as a combinatorial optimization problem, where varied strategies (i.e. random vs. heuristic assignments) can be tested. In this work, we present a possible heuristic strategy driven by an overlap minimization in the subsets for assigning the patterns input to the modules of the ensemble attractor neural network. In terms of system pattern storage capacity, the assignment driven by the overlap minimization in each subset/module proved to be better than no specific assignment, i.e. distribution of patterns to modules randomly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47 (2002)

    Article  MathSciNet  Google Scholar 

  2. Amit, D.J.: Modeling Brain Function: The World of Attractor Neural Networks. Cambridge University Press, New York (1992)

    Google Scholar 

  3. Arenzon, J., Lemke, N.: Simulating highly diluted neural networks. J. Phys. A Math. Gen. 27(15), 5161 (1994)

    Article  Google Scholar 

  4. Dávila, C., González, M., Pérez-Medina, J.-L., Dominguez, D., Sánchez, Á., Rodriguez, F.B.: Ensemble of attractor networks for 2D gesture retrieval. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2019. LNCS, vol. 11507, pp. 488–499. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20518-8_41

    Chapter  Google Scholar 

  5. Derrida, B., Gardner, E., Zippelius, A.: An exactly solvable asymmetric neural network model. EPL (Europhys. Lett.) 4(2), 167 (1987)

    Article  Google Scholar 

  6. Dominguez, D., González, M., Rodríguez, F.B., Serrano, E., Erichsen Jr., R., Theumann, W.: Structured information in sparse-code metric neural networks. Phys. A Stat. Mech. Appl. 391(3), 799–808 (2012)

    Article  Google Scholar 

  7. Dominguez, D., González, M., Serrano, E., Rodríguez, F.B.: Structured information in small-world neural networks. Phys. Rev. E 79(2), 021909 (2009)

    Article  Google Scholar 

  8. Doria, F., Erichsen Jr., R., González, M., Rodríguez, F.B., Sánchez, Á., Dominguez, D.: Structured patterns retrieval using a metric attractor network: application to fingerprint recognition. Phys. A Stat. Mech. Appl. 457, 424–436 (2016)

    Article  MathSciNet  Google Scholar 

  9. Ghandeharizadeh, S., Irani, S., Lam, J.: The subset assignment problem for data placement in caches. Algorithmica 80(7), 2201–2220 (2018)

    Article  MathSciNet  Google Scholar 

  10. González, M., Dávila, C., Dominguez, D., Sánchez, Á., Rodriguez, F.B.: Fingerprint retrieval using a specialized ensemble of attractor networks. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2019. LNCS, vol. 11507, pp. 709–719. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20518-8_59

    Chapter  Google Scholar 

  11. González, M., Dominguez, D., Sánchez, Á., Rodríguez, F.B.: Capacity and retrieval of a modular set of diluted attractor networks with respect to the global number of neurons. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2017. LNCS, vol. 10305, pp. 497–506. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59153-7_43

    Chapter  Google Scholar 

  12. Gonzalez, M., Dominguez, D., Sanchez, A., Rodriguez, F.B.: Increase attractor capacity using an ensembled neural network. Expert Syst. Appl. 71, 206–215 (2017). https://doi.org/10.1016/j.eswa.2016.11.035

    Article  Google Scholar 

  13. González, M., Sánchez, Á., Dominguez, D., Rodríguez, F.B.: Ensemble of diluted attractor networks with optimized topology for fingerprint retrieval. Neurocomputing 442, 269–280 (2021)

    Article  Google Scholar 

  14. Hertz, J.A., Krogh, J., Palmer, R.: Introduction to the Theory of Neural Computation. Santa Fe Institute Studies in the Sciences of Complexity, vol. 1. Addison-Wesley (1991)

    Google Scholar 

  15. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Nat. Acad. Sci. 79(8), 2554–2558 (1982)

    Article  MathSciNet  Google Scholar 

  16. Pentico, D.W.: Assignment problems: a golden anniversary survey. Eur. J. Oper. Res. 176(2), 774–793 (2007)

    Article  MathSciNet  Google Scholar 

  17. Staal, J., Abramoff, M., Niemeijer, M., Viergever, M., van Ginneken, B.: Ridge based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501–509 (2004)

    Article  Google Scholar 

  18. Uhl, A.: State of the art in vascular biometrics. In: Uhl, A., Busch, C., Marcel, S., Veldhuis, R. (eds.) Handbook of Vascular Biometrics. ACVPR, pp. 3–61. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-27731-4_1

    Chapter  Google Scholar 

Download references

Acknowledgments

Funded by UDLA-SIS.MGR.21.04, AEI/FEDER TIN2017-84452-R, PID2020-114867RB-I00, RTI2018-098019-B-I00, and CYTED Network 518RT0559.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario González .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

González, M., Sánchez, Á., Dominguez, D., Rodríguez, F.B. (2021). Fine-Tuning of Patterns Assignment to Subnetworks Increases the Capacity of an Attractor Network Ensemble. In: Rojas, I., Joya, G., Català, A. (eds) Advances in Computational Intelligence. IWANN 2021. Lecture Notes in Computer Science(), vol 12862. Springer, Cham. https://doi.org/10.1007/978-3-030-85099-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85099-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85098-2

  • Online ISBN: 978-3-030-85099-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics