[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Observation Period Length for Channel Selection

  • Conference paper
  • First Online:
Simulation Tools and Techniques (SIMUtools 2020)

Abstract

The transmitter needs to select optimal wireless channel from several available ones in mobile communication. Since the instantaneous channel rate is time-varying with unknown statistics, the channel selection is based on observation. As the packets arrive, controller need to observe channel state in observation period, and then transmit packets through optimal channel in transmission period. We investigate the trade-off between observation period and transmission period. Short observation period might lead to wrong decision while long observation period wastes time. The simulation results show that there is an optimal length of observation period. The total transmission time experience a sharp decreasing before the optimal point. The longer observation does not cause an obvious increasing of length. This implies that the observation could be set longer rather than shorter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jiang, D., Huo, L., Lv, Z., Song, H., Qin, W.: A joint multi-criteria utility-based network selection approach for vehicle-to-infrastructure networking. IEEE Trans. Intell. Transp. Syst. 19(10), 3305–3319 (2018)

    Article  Google Scholar 

  2. Jiang, D., Wang, Y., Lv, Z., Qi, S., Singh, S.: Big data analysis based network behavior insight of cellular networks for industry 4.0 applications. IEEE Trans. Ind. Inform. 16(2), 1310–1320 (2020)

    Article  Google Scholar 

  3. Wang, F., Jiang, D., Qi, S.: An adaptive routing algorithm for integrated information networks. China Commun. 7(1), 196–207 (2019)

    Google Scholar 

  4. Zhang, K., Chen, L., An, Y., Cui, P.: A QoE test system for vehicular voice cloud services. Mob. Netw. Appl. 1–6 (2019). https://doi.org/10.1007/s11036-019-01415-3

  5. Jiang, D., Wang, W., Shi, L., Song, H.: A compressive sensing-based approach to end-to-end network traffic reconstruction. IEEE Trans. Netw. Sci. Eng. 7(1), 507–519 (2020)

    Article  MathSciNet  Google Scholar 

  6. Wang, Y., Jiang, D., Huo, L., Zhao, Y.: A new traffic prediction algorithm to software defined networking. Mob. Netw. Appl. 1–10 (2019). https://doi.org/10.1007/s11036-019-01423-3

  7. Qi, S., Jiang, D., Huo, L.: A prediction approach to end-to-end traffic in space information networks. Mob. Netw. Appl. 1–10 (2019). https://doi.org/10.1007/s11036-019-01424-2

  8. Huo, L., Jiang, D., Lv, Z., et al.: An intelligent optimization-based traffic information acquirement approach to software-defined networking. Comput. Intell. 36, 151–171 (2019)

    Article  Google Scholar 

  9. Chen, L., et al.: A lightweight end-side user experience data collection system for quality evaluation of multimedia communications. IEEE Access 6(1), 15408–15419 (2018)

    Article  Google Scholar 

  10. Chen, L., Zhang, L.: Spectral efficiency analysis for massive MIMO system under QoS constraint: an effective capacity perspective. Mob. Netw. Appl. 1–9 (2020). https://doi.org/10.1007/s11036-019-01414-4

  11. Chen, L., Jiang, D., Bao, R., Xiong, J., Liu, F., Bei, L.: MIMO scheduling effectiveness analysis for bursty data service from view of QoE. Chin. J. Electron. 26(5), 1079–1085 (2017)

    Article  Google Scholar 

  12. Jiang, D., Wang, Y., Lv, Z., Wang, W., Wang, H.: An energy-efficient networking approach in cloud services for IIoT networks. IEEE J. Sel. Areas Commun. 38(5), 928–941 (2020)

    Article  Google Scholar 

  13. Jiang, D., Zhang, P., Lv, Z., et al.: Energy-efficient multi-constraint routing algorithm with load balancing for smart city applications. IEEE Internet Things J. 3(6), 1437–1447 (2016)

    Article  Google Scholar 

  14. Jiang, D., Li, W., Lv, H.: An energy-efficient cooperative multicast routing in multi-hop wireless networks for smart medical applications. Neurocomputing 220, 160–169 (2017)

    Article  Google Scholar 

  15. Bao, R., Chen, L., Cui, P.: User behavior and user experience analysis for social network services. Wireless Netw. (2019). https://doi.org/10.1007/s11276-019-02233-x

    Article  Google Scholar 

  16. Jiang, D., Huo, L., Song, H.: Rethinking behaviors and activities of base stations in mobile cellular networks based on big data analysis. IEEE Trans. Netw. Sci. Eng. 7(1), 80–90 (2020)

    Article  MathSciNet  Google Scholar 

  17. Jiang, D., Huo, L., Li, Y.: Fine-granularity inference and estimations to network traffic for SDN. PLoS ONE 13(5), 1–23 (2018)

    Google Scholar 

  18. Huo, L., Jiang, D., Qi, S., Song, H., Miao, L.: An AI-based adaptive cognitive modeling and measurement method of network traffic for EIS. Mob. Netw. Appl. 1–11 (2019). https://doi.org/10.1007/s11036-019-01419-z

  19. Tan, J., Xiao, S., Han, S., Liang, Y., Leung, V.C.M.: QoS-aware user association and resource allocation in LAA-LTE/WiFi coexistence systems. IEEE Trans. Wireless Commun. 18(4), 2415–2430 (2019)

    Article  Google Scholar 

  20. Wang, Y., Tang, X., Wang, T.: A unified QoS and security provisioning framework for wiretap cognitive radio networks: a statistical queueing analysis approach. IEEE Trans. Wireless Commun. 18(3), 1548–1565 (2019)

    Article  Google Scholar 

  21. Hassan, M.Z., Hossain, M.J., Cheng, J., Leung, V.C.M.: Hybrid RF/FSO Backhaul networks with statistical-QoS-aware buffer-aided relaying. IEEE Trans. Wireless Commun. 19(3), 1464–1483 (2020)

    Article  Google Scholar 

  22. Zhang, Z., Wang, R., Yu, F.R., Fu, F., Yan, Q.: QoS aware transcoding for live streaming in edge-clouds aided HetNets: an enhanced actor-critic approach. IEEE Trans. Veh. Technol. 68(11), 11295–11308 (2019)

    Article  Google Scholar 

  23. Barakabitze, A.A., et al.: QoE management of multimedia streaming services in future networks: a tutorial and survey. IEEE Commun. Surv. Tutor. 22(1), 526–565 (2020)

    Article  Google Scholar 

  24. Orsolic, I., Skorin-Kapov, L.: Framework for in-network QoE monitoring of encrypted video streaming. IEEE Access 8, 74691–74706 (2020)

    Article  Google Scholar 

  25. Song, E., et al.: Threshold-oblivious on-line web QoE assessment using neural network-based regression model. IET Commun. 14(12), 2018–2026 (2020)

    Article  Google Scholar 

  26. Seufert, M., Wassermann, S., Casas, P.: Considering user behavior in the quality of experience cycle: towards proactive QoE-aware traffic management. IEEE Commun. Lett. 23(7), 1145–1148 (2019)

    Article  Google Scholar 

  27. Lee, Y., Kim, Y., Park, S.: A machine learning approach that meets axiomatic properties in probabilistic analysis of LTE spectral efficiency. In: 2019 International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Korea (South), pp. 1451–1453 (2019)

    Google Scholar 

  28. Ji, H., Sun, C., Shieh, W.: Spectral efficiency comparison between analog and digital RoF for mobile Fronthaul transmission link. J. Lightwave Technol. 38, 5617–5623 (2020)

    Article  Google Scholar 

  29. Hayati, M., Kalbkhani, H., Shayesteh, M.G.: Relay selection for spectral-efficient network-coded multi-source D2D communications. In: 2019 27th Iranian Conference on Electrical Engineering (ICEE), Yazd, Iran, pp. 1377–1381 (2019)

    Google Scholar 

  30. You, L., Xiong, J., Zappone, A., Wang, W., Gao, X.: Spectral efficiency and energy efficiency tradeoff in massive MIMO downlink transmission with statistical CSIT. IEEE Trans. Signal Process. 68, 2645–2659 (2020)

    Article  MathSciNet  Google Scholar 

  31. Guo, C., Liang, L., Li, G.Y.: Resource allocation for low-latency vehicular communications: an effective capacity perspective. IEEE J. Sel. Areas Commun. 37(4), 905–917 (2019)

    Article  Google Scholar 

  32. Shehab, M., Alves, H., Latva-aho, M.: Effective capacity and power allocation for machine-type communication. IEEE Trans. Veh. Technol. 68(4), 4098–4102 (2019)

    Article  Google Scholar 

  33. Cui, Q., Gu, Y., Ni, W., Liu, R.P.: Effective capacity of licensed-assisted access in unlicensed spectrum for 5G: from theory to application. IEEE J. Sel. Areas Commun. 35(8), 1754–1767 (2017)

    Article  Google Scholar 

  34. Xiao, C., Zeng, J., Ni, W., Liu, R.P., Su, X., Wang, J.: Delay guarantee and effective capacity of downlink NOMA fading channels. IEEE J. Sel. Top. Sig. Process. 13(3), 508–523 (2019)

    Article  Google Scholar 

  35. Björnson, E., Larsson, E.G., Debbah, M.: Massive MIMO for maximal spectral efficiency: how many users and pilots should be allocated? IEEE Trans. Wireless Commun. 15(2), 1293–1308 (2016)

    Article  Google Scholar 

  36. Stahlbuhk, T., Shrader, B., Modiano, E.: Learning aloglrithms for mining queue length regret. In: 2018 IEEE International Symposium on Information (2018)

    Google Scholar 

  37. Bubeck, S., Cesa-Bianchi, N.: Regret analysis of stochastic and nonsochastic multi-armed bandit problems. Found. Trends Mach. Learn. 5(1), 1–122 (2012)

    Article  Google Scholar 

  38. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed Bandit problem. Mach. Learn. 47(2–3), 235–256 (2002). https://doi.org/10.1023/A:1013689704352

    Article  Google Scholar 

  39. Krishnasamy, S., et al.: Regret of queueing bandits. In: Proceedings of the Neural Information Processing Systems, pp. 1669–1677 (2016)

    Google Scholar 

Download references

Acknowledgements

This work is partly supported by Jiangsu technology project of Housing and Urban-Rural Development (No. 2018ZD265) and Jiangsu major natural science research project of College and University (No. 19KJA470002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shi, Y., Chen, L., Zhang, K., An, Y., Cui, P. (2021). Observation Period Length for Channel Selection. In: Song, H., Jiang, D. (eds) Simulation Tools and Techniques. SIMUtools 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 369. Springer, Cham. https://doi.org/10.1007/978-3-030-72792-5_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72792-5_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72791-8

  • Online ISBN: 978-3-030-72792-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics