[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Real-Time Gesture Classification System Based on Dynamic Vision Sensor

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12532))

Included in the following conference series:

Abstract

A biologically inspired event camera being able to produce more than 500 pictures per second  [1], has been proposed in recent years. Event cameras can achieve profound efficiency in addressing many drawbacks of traditional cameras, for example redundant data and low frame rate during classification. In this paper, we apply a Celex IV DVS camera to fabricate a four-class hand gesture dataset for the first time. Meanwhile, we propose a real-time workflow for reconstructing Celex event data into intensity images while implementing gesture classification with a proposed LeNet-based  [2] network and keyframe detection method. More than 30 fps has been achieved with our proposed workflow on a laptop. Compared to the state-of-art work [3] with an accuracy of 99.3%, our proposed network achieves a competent accuracy of 99.75%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/Adnios/GestureRecognitionDVS.

References

  1. Chen, S., Guo, M.: Live demonstration: CeleX-V: a 1m pixel multi-mode event-based sensor. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  2. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  3. Lungu, I.-A., Corradi, F., Delbrück, T.: Live demonstration: convolutional neural network driven by dynamic vision sensor playing roshambo. In: 2017 IEEE International Symposium on Circuits and Systems (ISCAS), p. 1. IEEE (2017)

    Google Scholar 

  4. Gallego, G., et al.: Event-based vision: a survey. arXiv preprint arXiv:1904.08405 (2019)

  5. Huang, J., Guo, M., Chen, S.: A dynamic vision sensor with direct logarithmic output and full-frame picture-on-demand. In: 2017 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–4. IEEE (2017)

    Google Scholar 

  6. Amir, A., et al.: A low power, fully event-based gesture recognition system. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7243–7252 (2017)

    Google Scholar 

  7. Baby, S.A., Vinod, B., Chinni, C., Mitra, K.: Dynamic vision sensors for human activity recognition. In: 2017 4th IAPR Asian Conference on Pattern Recognition (ACPR), pp. 316–321. IEEE (2017)

    Google Scholar 

  8. Wang, Q., Zhang, Y., Yuan, J., Lu, Y.: Space-time event clouds for gesture recognition: From RGB cameras to event cameras. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1826–1835. IEEE (2019)

    Google Scholar 

  9. Lee, J.H., et al.: Real-time gesture interface based on event-driven processing from stereo silicon retinas. IEEE Trans. Neural Netw. Learn. Syst. 25(12), 2250–2263 (2014)

    Article  Google Scholar 

  10. Lungu, I.A., Liu, S.-C., Delbruck, T.: Fast event-driven incremental learning of hand symbols. In: 2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS), pp. 25–28. IEEE (2019)

    Google Scholar 

  11. Lungu, I.A., Liu, S.-C., Delbruck, T.: Incremental learning of hand symbols using event-based cameras. IEEE J. Emerg. Sel. Top. Circ. Syst. 9(4), 690–696 (2019)

    Article  Google Scholar 

  12. Zong, X., Xiao, P., Wen, S.: An event camera tracking based on MLS surface fitting algorithm. In: 2018 Chinese Control And Decision Conference (CCDC), pp. 5001–5005. IEEE (2018)

    Google Scholar 

  13. Zhu, Q., Triesch, J., Shi, B.E.: Retinal slip estimation and object tracking with an active event camera. In: 2020 2nd IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS), pp. 59–63 (2020)

    Google Scholar 

  14. Glover, A., Bartolozzi, C.: Robust visual tracking with a freely-moving event camera. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3769–3776. IEEE (2017)

    Google Scholar 

  15. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: 2011 International Conference on Computer Vision, pp. 2564–2571. IEEE (2011)

    Google Scholar 

  16. Sivilotti, M.: Wiring considerations in analog VLSI systems with application to field-programmable networks. Ph.D. Thesis, California Institute of Technology, Pasadena, CA (1991)

    Google Scholar 

  17. CelePixel: Celepixel technology. [EB/OL]. https://github.com/CelePixel/CeleX4-OpalKelly/tree/master/Documentation Accessed 15 Apr 2020

  18. Moeys, D.P., et al.: Steering a predator robot using a mixed frame/event-driven convolutional neural network. In: 2016 Second International Conference on Event-based Control, Communication, and Signal Processing (EBCCSP), pp. 1–8. IEEE (2016)

    Google Scholar 

  19. Pavlovic, V.I., Sharma, R., Huang, T.S.: Visual interpretation of hand gestures for human-computer interaction: a review. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 677–695 (1997)

    Article  Google Scholar 

  20. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77(2), 257–286 (1989)

    Article  Google Scholar 

  21. Nagarajan, S., Subashini, T.S.: Static hand gesture recognition for sign language alphabets using edge oriented histogram and multi class SVM. Int. J. Comput. Appl. 82(4), 2013

    Google Scholar 

  22. Cheng, W., Sun, Y., Li, G., Jiang, G., Liu, H.: Jointly network: a network based on cnn and rbm for gesture recognition. Neural Comput. Appl. 31(1), 309–323 (2019)

    Article  Google Scholar 

  23. Ye, C.: Learning of Dense Optical Flow, Motion and Depth, from Sparse Event Cameras. Ph.D. thesis (2019)

    Google Scholar 

  24. Zhu, A.Z., Yuan, L., Chaney, K., Daniilidis, K.: EV-FlowNet: self-supervised optical flow estimation for event-based cameras. arXiv preprint arXiv:1802.06898 (2018)

  25. Bardow, P., Davison, A.J., Leutenegger, S.: Simultaneous optical flow and intensity estimation from an event camera. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 884–892 (2016)

    Google Scholar 

  26. Brosch, T., Tschechne, S., Neumann, H.: On event-based optical flow detection. Front. Neurosci. 9, 137 (2015)

    Article  Google Scholar 

  27. Ahn, E.Y., Lee, J.H., Mullen, T., Yen, J.: Dynamic vision sensor camera based bare hand gesture recognition. In: 2011 IEEE Symposium On Computational Intelligence For Multimedia, Signal And Vision Processing, pp. 52–59. IEEE (2011)

    Google Scholar 

  28. Lee, J.H., et al.: Real-time motion estimation based on event-based vision sensor. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 204–208. IEEE (2014)

    Google Scholar 

  29. Liu, H., Brandli, C., Li, C., Liu, S.-C., Delbruck, T.: Design of a spatiotemporal correlation filter for event-based sensors. In: 2015 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 722–725. IEEE (2015)

    Google Scholar 

  30. Guo, S., et al.: A noise filter for dynamic vision sensors based on global space and time information. arXiv preprint arXiv:2004.04079 (2020)

  31. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 6, 679–698 (1986)

    Article  Google Scholar 

  32. Zhang, Y.: Celexmatlabtoolbox. [EB/OL]. https://github.com/yucicheung/CelexMatlabToolbox Accessed 15 Apr 2020

  33. Viswanathan, D.G.: Features from accelerated segment test (FAST). Homepages. Inf. Ed. Ac. UK (2009)

    Google Scholar 

  34. Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: binary robust independent elementary features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_56

    Chapter  Google Scholar 

Download references

Acknowledgments

This work is founded by National Key R&D Program of China [grant numbers 2018YFB2202603].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, X., Wang, J., Zhang, L., Guo, S., Qu, L., Wang, L. (2020). Real-Time Gesture Classification System Based on Dynamic Vision Sensor. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Lecture Notes in Computer Science(), vol 12532. Springer, Cham. https://doi.org/10.1007/978-3-030-63830-6_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63830-6_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63829-0

  • Online ISBN: 978-3-030-63830-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics