[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Unsupervised Domain Adaptive Object Detection Using Forward-Backward Cyclic Adaptation

  • Conference paper
  • First Online:
Computer Vision – ACCV 2020 (ACCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12624))

Included in the following conference series:

Abstract

We present a novel approach to perform the unsupervised domain adaptation for object detection through forward-backward cyclic (FBC) training. Recent adversarial training based domain adaptation methods have shown their effectiveness on minimizing domain discrepancy via marginal feature distributions alignment. However, aligning the marginal feature distributions does not guarantee the alignment of class conditional distributions. This limitation is more evident when adapting object detectors as the domain discrepancy is larger compared to the image classification task, e.g., various number of objects exist in one image and the majority of content in an image is the background. This motivates us to learn domain-invariance for category-level semantics via gradient alignment for instance-level adaptation. Intuitively, if the gradients of two domains point in similar directions, then the learning of one domain can improve that of another domain. We propose Forward- Backward Cyclic Adaptation to achieve gradient alignment, which iteratively computes adaptation from source to target via backward hopping and from target to source via forward passing. In addition, we align low-level features for adapting image-level color/texture via adversarial training. However, the detector that performs well on both domains is not ideal for the target domain. As such, in each cycle, domain diversity is enforced by two regularizations: 1) maximum entropy regularization on the source domain to penalize confident source-specific learning and 2) minimum entropy regularization on target domain to intrigue target-specific learning. Theoretical analysis of the training process is provided, and extensive experiments on challenging cross-domain object detection datasets have shown our approach’s superiority over the state-of-the-art.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: NeurIPS. (2015)

    Google Scholar 

  2. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C.: Ssd: Single shot multibox detector. In: ECCV. (2016)

    Google Scholar 

  3. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified, real-time object detection. In: CVPR. (2016)

    Google Scholar 

  4. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR. (2015)

    Google Scholar 

  5. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: CVPR. (2017)

    Google Scholar 

  6. Hu, P., Ramanan, D.: Finding tiny faces. In: CVPR. (2017)

    Google Scholar 

  7. Chen, X., Ma, H., Wan, J., Li, B., Xia, T.: Multi-view 3d object detection network for autonomous driving. In: CVPR. (2017)

    Google Scholar 

  8. Long, M., Cao, Y., Wang, J., Jordan, M.I.: Learning transferable features with deep adaptation networks. ICML (2015)

    Google Scholar 

  9. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Unsupervised domain adaptation with residual transfer networks. In: NeurIPS. (2016)

    Google Scholar 

  10. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: ICML. (2015)

    Google Scholar 

  11. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: CVPR. (2017)

    Google Scholar 

  12. Saito, K., Ushiku, Y., Harada, T.: Asymmetric tri-training for unsupervised domain adaptation. In: ICML. (2017)

    Google Scholar 

  13. Saito, K., Watanabe, K., Ushiku, Y., Harada, T.: Maximum classifier discrepancy for unsupervised domain adaptation. In: CVPR. (2018)

    Google Scholar 

  14. Sun, B., Saenko, K.: Deep coral: Correlation alignment for deep domain adaptation. In: ECCV. (2016)

    Google Scholar 

  15. Tzeng, E., Hoffman, J., Darrell, T., Saenko, K.: Simultaneous deep transfer across domains and tasks. In: ICCV. (2015)

    Google Scholar 

  16. Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., Darrell, T.: Deep domain confusion: Maximizing for domain invariance. arXiv preprint arXiv:1412.3474 (2014)

  17. Xie, S., Zheng, Z., Chen, L., Chen, C.: Learning semantic representations for unsupervised domain adaptation. In: ICML. (2018)

    Google Scholar 

  18. Shu, R., Bui, H.H., Narui, H., Ermon, S.: A dirt-t approach to unsupervised domain adaptation. In: ICLR. (2018)

    Google Scholar 

  19. Luo, Y., Zheng, L., Guan, T., Yu, J., Yang, Y.: Taking a closer look at domain shift: Category-level adversaries for semantics consistent domain adaptation. arXiv preprint arXiv:1809.09478 (2018)

  20. Kumar, A., Sattigeri, P., Wadhawan, K., Karlinsky, L., Feris, R., Freeman, B., Wornell, G.: Co-regularized alignment for unsupervised domain adaptation. In: NeurIPS. (2018)

    Google Scholar 

  21. Chen, Y., Li, W., Sakaridis, C., Dai, D., Van Gool, L.: Domain adaptive faster r-cnn for object detection in the wild. In: CVPR. (2018)

    Google Scholar 

  22. Saito, K., Ushiku, Y., Harada, T., Saenko, K.: Strong-weak distribution alignment for adaptive object detection. In: CVPR. (2019)

    Google Scholar 

  23. Zhu, X., Pang, J., Yang, C., Shi, J., Lin, D.: Adapting object detectors via selective cross-domain alignment. In: CVPR. (2019)

    Google Scholar 

  24. Zhuang, C., Han, X., Huang, W., Scott, M.R.: ifan: Image-instance full alignment networks for adaptive object detection. In: AAAI. (2020)

    Google Scholar 

  25. He, D., Xia, Y., Qin, T., Wang, L., Yu, N., Liu, T.Y., Ma, W.Y.: Dual learning for machine translation. In: NeurlIPS. (2016)

    Google Scholar 

  26. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV. (2017)

    Google Scholar 

  27. Yi, Z., Zhang, H., Tan, P., Gong, M.: Dualgan: Unsupervised dual learning for image-to-image translation. In: ICCV. (2017)

    Google Scholar 

  28. Girshick, R.: Fast r-cnn. In: ICCV. (2015)

    Google Scholar 

  29. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: CVPR. (2017)

    Google Scholar 

  30. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Deep transfer learning with joint adaptation networks. In: ICML. (2017)

    Google Scholar 

  31. Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Vaughan, J.W.: A theory of learning from different domains. Machine Learning 79, 151–175 (2010)

    Article  MathSciNet  Google Scholar 

  32. Kang, G., Jiang, L., Yang, Y., Hauptmann, A.G.: Contrastive adaptation network for unsupervised domain adaptation. In: CVPR. (2019)

    Google Scholar 

  33. Chen, C., Xie, W., Xu, T., Huang, W., Rong, Y., Ding, X., Huang, Y., Huang, J.: Progressive feature alignment for unsupervised domain adaptation. In: CVPR. (2019)

    Google Scholar 

  34. Sener, O., Song, H.O., Saxena, A., Savarese, S.: Learning transferrable representations for unsupervised domain adaptation. In: NeurIPS. (2016)

    Google Scholar 

  35. Chen, M., Weinberger, K.Q., Blitzer, J.: Co-training for domain adaptation. In: NeurIPS. (2011)

    Google Scholar 

  36. Lee, D.H.: Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. In: Workshop on Challenges in Representation Learning, ICML. Volume 3. (2013) 2

    Google Scholar 

  37. He, Z., Zhang, L.: Multi-adversarial faster-rcnn for unrestricted object detection. In: ICCV. (2019)

    Google Scholar 

  38. Kim, T., Jeong, M., Kim, S., Choi, S., Kim, C.: Diversify and match: A domain adaptive representation learning paradigm for object detection. In: CVPR. (2019)

    Google Scholar 

  39. Xie, R., Yu, F., Wang, J., Wang, Y., Zhang, L.: Multi-level domain adaptive learning for cross-domain detection. In: ICCV Workshops. (2019)

    Google Scholar 

  40. Hsu, H.K., Yao, C.H., Tsai, Y.H., Hung, W.C., Tseng, H.Y., Singh, M., Yang, M.H.: Progressive domain adaptation for object detection. In: The IEEE Winter Conference on Applications of Computer Vision. (2020)

    Google Scholar 

  41. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: ICML. (2017)

    Google Scholar 

  42. Nichol, A., Schulman, J.: Reptile: a scalable metalearning algorithm. arXiv preprint arXiv:1803.02999 2 (2018)

  43. Riemer, M., Cases, I., Ajemian, R., Liu, M., Rish, I., Tu, Y., Tesauro, G.: Learning to learn without forgetting by maximizing transfer and minimizing interference. ICLR (2019)

    Google Scholar 

  44. Jaynes, E.T.: Information theory and statistical mechanics. Physical review (1957)

    Google Scholar 

  45. Williams, R.J., Peng, J.: Function optimization using connectionist reinforcement learning algorithms. Connection Science (1991)

    Google Scholar 

  46. Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., Kavukcuoglu, K.: Asynchronous methods for deep reinforcement learning. In: ICML. (2016) 1928–1937

    Google Scholar 

  47. Pereyra, G., Tucker, G., Chorowski, J., Kaiser, Ł., Hinton, G.: Regularizing neural networks by penalizing confident output distributions. arXiv preprint arXiv:1701.06548 (2017)

  48. Liu, H., Jin, S., Zhang, C.: Connectionist temporal classification with maximum entropy regularization. In: NeurIPS. (2018)

    Google Scholar 

  49. Dubey, A., Gupta, O., Raskar, R., Naik, N.: Maximum-entropy fine grained classification. In: NeurIPS. (2018)

    Google Scholar 

  50. Zhu, X., Zhou, H., Yang, C., Shi, J., Lin, D.: Penalizing top performers: Conservative loss for semantic segmentation adaptation. In: Proceedings of the European Conference on Computer Vision (ECCV). (2018) 568–583

    Google Scholar 

  51. Palubinskas, G., Descombes, X., Kruggel, F.: An unsupervised clustering method using the entropy minimization. In: ICPR. (1998)

    Google Scholar 

  52. Grandvalet, Y., Bengio, Y.: Semi-supervised learning by entropy minimization. In: NeurIPS. (2005)

    Google Scholar 

  53. Luo, Z., Zou, Y., Hoffman, J., Fei-Fei, L.F.: Label efficient learning of transferable representations acrosss domains and tasks. In: NeurIPS. (2017)

    Google Scholar 

  54. Ravi, S., Larochelle, H.: Optimization as a model for few-shot learning. ICLR (2016)

    Google Scholar 

  55. Lopez-Paz, D., et al.: Gradient episodic memory for continual learning. In: NeurIPS. (2017) 6467–6476

    Google Scholar 

  56. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. In: CVPR. (2009)

    Google Scholar 

  57. Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z., Paul Smolley, S.: Least squares generative adversarial networks. In: ICCV. (2017)

    Google Scholar 

  58. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (voc) challenge. IJCV 88, 303–338 (2010)

    Article  Google Scholar 

  59. Inoue, N., Furuta, R., Yamasaki, T., Aizawa, K.: Cross-domain weakly-supervised object detection through progressive domain adaptation. In: CVPR. (2018)

    Google Scholar 

  60. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR. (2016)

    Google Scholar 

  61. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. In: ICCV. (2017)

    Google Scholar 

  62. Johnson-Roberson, M., Barto, C., Mehta, R., Sridhar, S.N., Rosaen, K., Vasudevan, R.: Driving in the matrix: Can virtual worlds replace human-generated annotations for real world tasks? arXiv preprint arXiv:1610.01983 (2016)

  63. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: CVPR. (2016)

    Google Scholar 

  64. Sakaridis, C., Dai, D., Van Gool, L.: Semantic foggy scene understanding with synthetic data. IJCV (2018) 1–20

    Google Scholar 

  65. Maaten, L.v.d., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9 (2008) 2579–2605

    Google Scholar 

Download references

Acknowledgements

This research was funded by the Australian Government through the Australian Research Council and Sullivan Nicolaides Pathology under Linkage Project LP160101797. Lin Wu was supported by NSFC U19A2073, the Fundamental Research Funds for the Central Universities under Grant No.JZ2020HGTB0050.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siqi Yang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 4937 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, S., Wu, L., Wiliem, A., Lovell, B.C. (2021). Unsupervised Domain Adaptive Object Detection Using Forward-Backward Cyclic Adaptation. In: Ishikawa, H., Liu, CL., Pajdla, T., Shi, J. (eds) Computer Vision – ACCV 2020. ACCV 2020. Lecture Notes in Computer Science(), vol 12624. Springer, Cham. https://doi.org/10.1007/978-3-030-69535-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69535-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69534-7

  • Online ISBN: 978-3-030-69535-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics