Abstract
We present a novel approach to perform the unsupervised domain adaptation for object detection through forward-backward cyclic (FBC) training. Recent adversarial training based domain adaptation methods have shown their effectiveness on minimizing domain discrepancy via marginal feature distributions alignment. However, aligning the marginal feature distributions does not guarantee the alignment of class conditional distributions. This limitation is more evident when adapting object detectors as the domain discrepancy is larger compared to the image classification task, e.g., various number of objects exist in one image and the majority of content in an image is the background. This motivates us to learn domain-invariance for category-level semantics via gradient alignment for instance-level adaptation. Intuitively, if the gradients of two domains point in similar directions, then the learning of one domain can improve that of another domain. We propose Forward- Backward Cyclic Adaptation to achieve gradient alignment, which iteratively computes adaptation from source to target via backward hopping and from target to source via forward passing. In addition, we align low-level features for adapting image-level color/texture via adversarial training. However, the detector that performs well on both domains is not ideal for the target domain. As such, in each cycle, domain diversity is enforced by two regularizations: 1) maximum entropy regularization on the source domain to penalize confident source-specific learning and 2) minimum entropy regularization on target domain to intrigue target-specific learning. Theoretical analysis of the training process is provided, and extensive experiments on challenging cross-domain object detection datasets have shown our approach’s superiority over the state-of-the-art.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: NeurIPS. (2015)
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C.: Ssd: Single shot multibox detector. In: ECCV. (2016)
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified, real-time object detection. In: CVPR. (2016)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR. (2015)
Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: CVPR. (2017)
Hu, P., Ramanan, D.: Finding tiny faces. In: CVPR. (2017)
Chen, X., Ma, H., Wan, J., Li, B., Xia, T.: Multi-view 3d object detection network for autonomous driving. In: CVPR. (2017)
Long, M., Cao, Y., Wang, J., Jordan, M.I.: Learning transferable features with deep adaptation networks. ICML (2015)
Long, M., Zhu, H., Wang, J., Jordan, M.I.: Unsupervised domain adaptation with residual transfer networks. In: NeurIPS. (2016)
Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: ICML. (2015)
Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: CVPR. (2017)
Saito, K., Ushiku, Y., Harada, T.: Asymmetric tri-training for unsupervised domain adaptation. In: ICML. (2017)
Saito, K., Watanabe, K., Ushiku, Y., Harada, T.: Maximum classifier discrepancy for unsupervised domain adaptation. In: CVPR. (2018)
Sun, B., Saenko, K.: Deep coral: Correlation alignment for deep domain adaptation. In: ECCV. (2016)
Tzeng, E., Hoffman, J., Darrell, T., Saenko, K.: Simultaneous deep transfer across domains and tasks. In: ICCV. (2015)
Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., Darrell, T.: Deep domain confusion: Maximizing for domain invariance. arXiv preprint arXiv:1412.3474 (2014)
Xie, S., Zheng, Z., Chen, L., Chen, C.: Learning semantic representations for unsupervised domain adaptation. In: ICML. (2018)
Shu, R., Bui, H.H., Narui, H., Ermon, S.: A dirt-t approach to unsupervised domain adaptation. In: ICLR. (2018)
Luo, Y., Zheng, L., Guan, T., Yu, J., Yang, Y.: Taking a closer look at domain shift: Category-level adversaries for semantics consistent domain adaptation. arXiv preprint arXiv:1809.09478 (2018)
Kumar, A., Sattigeri, P., Wadhawan, K., Karlinsky, L., Feris, R., Freeman, B., Wornell, G.: Co-regularized alignment for unsupervised domain adaptation. In: NeurIPS. (2018)
Chen, Y., Li, W., Sakaridis, C., Dai, D., Van Gool, L.: Domain adaptive faster r-cnn for object detection in the wild. In: CVPR. (2018)
Saito, K., Ushiku, Y., Harada, T., Saenko, K.: Strong-weak distribution alignment for adaptive object detection. In: CVPR. (2019)
Zhu, X., Pang, J., Yang, C., Shi, J., Lin, D.: Adapting object detectors via selective cross-domain alignment. In: CVPR. (2019)
Zhuang, C., Han, X., Huang, W., Scott, M.R.: ifan: Image-instance full alignment networks for adaptive object detection. In: AAAI. (2020)
He, D., Xia, Y., Qin, T., Wang, L., Yu, N., Liu, T.Y., Ma, W.Y.: Dual learning for machine translation. In: NeurlIPS. (2016)
Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV. (2017)
Yi, Z., Zhang, H., Tan, P., Gong, M.: Dualgan: Unsupervised dual learning for image-to-image translation. In: ICCV. (2017)
Girshick, R.: Fast r-cnn. In: ICCV. (2015)
Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: CVPR. (2017)
Long, M., Zhu, H., Wang, J., Jordan, M.I.: Deep transfer learning with joint adaptation networks. In: ICML. (2017)
Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Vaughan, J.W.: A theory of learning from different domains. Machine Learning 79, 151–175 (2010)
Kang, G., Jiang, L., Yang, Y., Hauptmann, A.G.: Contrastive adaptation network for unsupervised domain adaptation. In: CVPR. (2019)
Chen, C., Xie, W., Xu, T., Huang, W., Rong, Y., Ding, X., Huang, Y., Huang, J.: Progressive feature alignment for unsupervised domain adaptation. In: CVPR. (2019)
Sener, O., Song, H.O., Saxena, A., Savarese, S.: Learning transferrable representations for unsupervised domain adaptation. In: NeurIPS. (2016)
Chen, M., Weinberger, K.Q., Blitzer, J.: Co-training for domain adaptation. In: NeurIPS. (2011)
Lee, D.H.: Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. In: Workshop on Challenges in Representation Learning, ICML. Volume 3. (2013) 2
He, Z., Zhang, L.: Multi-adversarial faster-rcnn for unrestricted object detection. In: ICCV. (2019)
Kim, T., Jeong, M., Kim, S., Choi, S., Kim, C.: Diversify and match: A domain adaptive representation learning paradigm for object detection. In: CVPR. (2019)
Xie, R., Yu, F., Wang, J., Wang, Y., Zhang, L.: Multi-level domain adaptive learning for cross-domain detection. In: ICCV Workshops. (2019)
Hsu, H.K., Yao, C.H., Tsai, Y.H., Hung, W.C., Tseng, H.Y., Singh, M., Yang, M.H.: Progressive domain adaptation for object detection. In: The IEEE Winter Conference on Applications of Computer Vision. (2020)
Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: ICML. (2017)
Nichol, A., Schulman, J.: Reptile: a scalable metalearning algorithm. arXiv preprint arXiv:1803.02999 2 (2018)
Riemer, M., Cases, I., Ajemian, R., Liu, M., Rish, I., Tu, Y., Tesauro, G.: Learning to learn without forgetting by maximizing transfer and minimizing interference. ICLR (2019)
Jaynes, E.T.: Information theory and statistical mechanics. Physical review (1957)
Williams, R.J., Peng, J.: Function optimization using connectionist reinforcement learning algorithms. Connection Science (1991)
Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., Kavukcuoglu, K.: Asynchronous methods for deep reinforcement learning. In: ICML. (2016) 1928–1937
Pereyra, G., Tucker, G., Chorowski, J., Kaiser, Ł., Hinton, G.: Regularizing neural networks by penalizing confident output distributions. arXiv preprint arXiv:1701.06548 (2017)
Liu, H., Jin, S., Zhang, C.: Connectionist temporal classification with maximum entropy regularization. In: NeurIPS. (2018)
Dubey, A., Gupta, O., Raskar, R., Naik, N.: Maximum-entropy fine grained classification. In: NeurIPS. (2018)
Zhu, X., Zhou, H., Yang, C., Shi, J., Lin, D.: Penalizing top performers: Conservative loss for semantic segmentation adaptation. In: Proceedings of the European Conference on Computer Vision (ECCV). (2018) 568–583
Palubinskas, G., Descombes, X., Kruggel, F.: An unsupervised clustering method using the entropy minimization. In: ICPR. (1998)
Grandvalet, Y., Bengio, Y.: Semi-supervised learning by entropy minimization. In: NeurIPS. (2005)
Luo, Z., Zou, Y., Hoffman, J., Fei-Fei, L.F.: Label efficient learning of transferable representations acrosss domains and tasks. In: NeurIPS. (2017)
Ravi, S., Larochelle, H.: Optimization as a model for few-shot learning. ICLR (2016)
Lopez-Paz, D., et al.: Gradient episodic memory for continual learning. In: NeurIPS. (2017) 6467–6476
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. In: CVPR. (2009)
Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z., Paul Smolley, S.: Least squares generative adversarial networks. In: ICCV. (2017)
Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (voc) challenge. IJCV 88, 303–338 (2010)
Inoue, N., Furuta, R., Yamasaki, T., Aizawa, K.: Cross-domain weakly-supervised object detection through progressive domain adaptation. In: CVPR. (2018)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR. (2016)
Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. In: ICCV. (2017)
Johnson-Roberson, M., Barto, C., Mehta, R., Sridhar, S.N., Rosaen, K., Vasudevan, R.: Driving in the matrix: Can virtual worlds replace human-generated annotations for real world tasks? arXiv preprint arXiv:1610.01983 (2016)
Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: CVPR. (2016)
Sakaridis, C., Dai, D., Van Gool, L.: Semantic foggy scene understanding with synthetic data. IJCV (2018) 1–20
Maaten, L.v.d., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9 (2008) 2579–2605
Acknowledgements
This research was funded by the Australian Government through the Australian Research Council and Sullivan Nicolaides Pathology under Linkage Project LP160101797. Lin Wu was supported by NSFC U19A2073, the Fundamental Research Funds for the Central Universities under Grant No.JZ2020HGTB0050.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Yang, S., Wu, L., Wiliem, A., Lovell, B.C. (2021). Unsupervised Domain Adaptive Object Detection Using Forward-Backward Cyclic Adaptation. In: Ishikawa, H., Liu, CL., Pajdla, T., Shi, J. (eds) Computer Vision – ACCV 2020. ACCV 2020. Lecture Notes in Computer Science(), vol 12624. Springer, Cham. https://doi.org/10.1007/978-3-030-69535-4_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-69535-4_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-69534-7
Online ISBN: 978-3-030-69535-4
eBook Packages: Computer ScienceComputer Science (R0)