Abstract
Plants are one of the most widely used resources for humans in different fields. Therefore, the distinction between the plant species is important and it is referred to as the plant detection system. Until now, this task has been done by the expert botanists which is an overwhelming and time consuming task. Moreover, there is a lack of the memory and the human fault, so the researchers endeavored to solve these disadvantages using the AI algorithms. For this goal, in this paper, a system is proposed that includes four phases: pre-processing, feature extraction, training, and test. In this method, we use the combination of the useful features of the leave shape, the leave texture, the leave color, and we provide a method for the classification of a number of the plant species. Finally, the feature vectors will be created and then, the classification is performed by using feed-forward back-propagation multi-layer perceptron artificial neural network algorithm. Then, the results of this method compare with other methods. The obtained results show the high accuracy of this method for a large number of the species in different conditions (such as pests, season changes and lighting).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arunpriya, C., Thanamani, A.S.: A novel leaf recognition technique for plant classification. Int. J. Comput. Eng. Appl. 4(2), 42–55 (2014)
Kalyoncu, C., Toygar, Ö.: Geometric leaf classification. Comput. Vis. Image Underst. 133, 102–109 (2015)
http://b2find.eudat.eu/dataset/. Available 18 July 2012
http://flavia.sourceforge.net. Available 24 Dec 2009
http://leafsnap.com/dataset. Available 11 July 2014
http://www.intelengine.cn/English/dataset/indexxx.html. Available 20 May 2011
Du, J.X., Wang, X.F., Zhang, G.J.: Leaf shape based plant species recognition. Appl. Math. Comput. 185, 883–893 (2007)
Ghaseb, M.A.J., Khamis, S., Mohammad, F., Fariman, H.J.: Feature decision-making ant colony optimization system for an automated recognition of plant species. Expert Syst. Appl. 42, 2361–2370 (2015)
Amlekar, M., Manza, R.R., Yannawar, P., Gaikwad, A.T.: Leaf features based plant classification using artificial neural network. IBMRD’s J. Manag. Res. 3(1), 224–232 (2014)
Rashad, M.Z., El-Desouky, B.S., Khawasik, M.S.: Plants images classification based on textural features using combined classifier. Int. J. Comput. Sci. Inf. Technol. (IJCSIT) 3(4), 93–100 (2011)
Nidheesh, P., Rajeev, A., Nikesh, P.: Classification of leaf using geometric features. Int. J. Eng. Res. Gen. Sci. 3(2), 1185–1190 (2015)
Hu, R., Jia, W., Ling, H., Huang, D.: Multiscale distance matrix for fast plant leaf recognition. IEEE Trans. Image Process. 21(11), 4667–4672 (2012)
Huang, T., Yang, G., Tang, G.: A fast two-dimensional median filtering algorithm. IEEE Trans. Acoust. Speech Signal Process. 27(1), 13–18 (1979)
Wang, X.F., Du, J.X., Zhang, G.J.: Recognition of leaf images based on shape features using a hypersphere classifier. In: Advances in Intelligent Computing, Lecture Notes in Computer Science, vol. 3644, pp. 87–96 (2005)
Husin, Z., Shakaff, A.Y.M., Aziz, A.H.A., Farook, R.S.M., Jaafar, M.N., Hashim, U., Harun, A.: Embedded portable device for herb leaves recognition using image processing techniques and neural network algorithm. Comput. Electron. Agric. 89, 18–29 (2012)
Wang, Z., Li, H., Zhu, Y., Xu, T.F.: Review of plant identification based on image processing. Arch. Comput. Methods Eng. 24(3), 637–654 (2017)
Wang, Z., Sun, X., Zhang, Y., Ying, Z., Ma, Y.: Leaf recognition based on PCNN. Neural Comput. Appl. Forum 27, 899–908 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Bagherinezhad, H., Kuchaki Rafsanjani, M., Balas, V.E., Koles, I.E. (2021). Classification of Plants Leave Using Image Processing and Neural Network. In: Balas, V., Jain, L., Balas, M., Shahbazova, S. (eds) Soft Computing Applications. SOFA 2018. Advances in Intelligent Systems and Computing, vol 1222. Springer, Cham. https://doi.org/10.1007/978-3-030-52190-5_16
Download citation
DOI: https://doi.org/10.1007/978-3-030-52190-5_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-52189-9
Online ISBN: 978-3-030-52190-5
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)