[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Approximate #Knapsack Computations to Count Semi-fair Allocations

  • Conference paper
  • First Online:
Theory and Applications of Models of Computation (TAMC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12337))

Abstract

In this paper, we study the problem of counting the number of different knapsack solutions with a prescribed cardinality. We present an FPTAS for this problem, based on dynamic programming. We also introduce two different types of semi-fair allocations of indivisible goods between two players. By semi-fair allocations, we mean allocations that ensure that at least one of the two players will be free of envy. We study the problem of counting such allocations and we provide FPTASs for both types, by employing our FPTAS for the prescribed cardinality knapsack problem.

Theofilos Triommatis was supported in part for this work by EPSRC grant EP/S023445/1 EPSRC Centre for Doctoral Training in Distributed Algorithms: the what, how and where of next-generation data science, https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/S023445/1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amanatidis, G., Birmpas, G., Markakis, V.: Comparing approximate relaxations of envy-freeness. In: Proceedings of IJCAI 2018, pp. 42–48 (2018). ijcai.org

  2. Buhmann, J.M., Gronskiy, A., Mihalák, M., Pröger, T., Srámek, R., Widmayer, P.: Robust optimization in the presence of uncertainty: a generic approach. J. Comput. Syst. Sci. 94, 135–166 (2018)

    Article  MathSciNet  Google Scholar 

  3. Dyer, M.E.: Approximate counting by dynamic programming. In: Proceedings of the 35th Annual ACM Symposium on Theory of Computing, STOC 2003, pp. 693–699. ACM (2003)

    Google Scholar 

  4. Dyer, M.E., Goldberg, L.A., Greenhill, C.S., Jerrum, M.: The relative complexity of approximate counting problems. Algorithmica 38(3), 471–500 (2004)

    Article  MathSciNet  Google Scholar 

  5. Foley, D.K.: Resource allocation and the public sector. Yale Econ Essays 7, 45–98 (1967)

    Google Scholar 

  6. Kiayias, A., Pagourtzis, A., Sharma, K., Zachos, S.: Acceptor-definable counting classes. In: Manolopoulos, Y., Evripidou, S., Kakas, A.C. (eds.) PCI 2001. LNCS, vol. 2563, pp. 453–463. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-38076-0_29

    Chapter  Google Scholar 

  7. Li, W., Lee, J., Shroff, N.B.: A faster FPTAS for knapsack problem with cardinality constraint. CoRR, abs/1902.00919 (2019)

    Google Scholar 

  8. Melissinos, N., Pagourtzis, A.: A faster FPTAS for the subset-sums ratio problem. In: Wang, L., Zhu, D. (eds.) COCOON 2018. LNCS, vol. 10976, pp. 602–614. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94776-1_50

    Chapter  Google Scholar 

  9. Pagourtzis, A., Zachos, S.: The complexity of counting functions with easy decision version. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 741–752. Springer, Heidelberg (2006). https://doi.org/10.1007/11821069_64

    Chapter  MATH  Google Scholar 

  10. Stefankovic, D., Vempala, S., Vigoda, E.: A deterministic polynomial-time approximation scheme for counting knapsack solutions. SIAM J. Comput. 41(2), 356–366 (2012)

    Article  MathSciNet  Google Scholar 

  11. Triommatis, T., Pagourtzis, A.: Approximate #knapsack computations to count semi-fair allocations. CoRR, abs/1912.12430 (2019)

    Google Scholar 

  12. Valiant, L.G.: The complexity of computing the permanent. Theoret. Comput. Sci. 8, 189–201 (1979)

    Article  MathSciNet  Google Scholar 

  13. Yazidi, A., Jonassen, T.M., Herrera-Viedma, E.: An aggregation approach for solving the non-linear fractional equality knapsack problem. Expert Syst. Appl. 110, 323–334 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theofilos Triommatis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Triommatis, T., Pagourtzis, A. (2020). Approximate #Knapsack Computations to Count Semi-fair Allocations. In: Chen, J., Feng, Q., Xu, J. (eds) Theory and Applications of Models of Computation. TAMC 2020. Lecture Notes in Computer Science(), vol 12337. Springer, Cham. https://doi.org/10.1007/978-3-030-59267-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59267-7_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59266-0

  • Online ISBN: 978-3-030-59267-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics