[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Detecting Intruders by User File Access Patterns

  • Conference paper
  • First Online:
Network and System Security (NSS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11928))

Included in the following conference series:

Abstract

Our society is facing a growing threat from data breaches where confidential information is stolen from computer servers. In order to steal data, hackers must first gain entry into the targeted systems. Commercial off-the-shelf intrusion detection systems are unable to defend against the intruders effectively. This research uses cyber behavior analytics to study and report how anomalies compare to normal behavior. In this paper, we present methods based on machine learning algorithms to detect intruders based on the file access patterns within a user file directory. We proposed a set of behavioral features of the user’s file access patterns in a file system. We validate the effectiveness of the features by conducting experiments on an existing file system dataset with four classification algorithms. To limit the false alarms, we trained and tested the classifiers by optimizing the performance within the lower range of the false positive rate. The results from our experiments show that our approach was able to detect intruders with a 0.94 F1 score and false positive rate of less than 3%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Altmann, A., Tolosi, L., Sander, O., Lengauer, T.: Permutation importance: a corrected feature importance measure. Bioinformatics 26(10), 1340–1347 (2010). ISSN 1460-2059, 1367–4803, p. 395

    Article  Google Scholar 

  2. Anderson, J.P.: Computer security threat monitoring and surveillance. Technical report, James P. Anderson Company, Fort Washington, Pennsylvania (1980)

    Google Scholar 

  3. Atkinson, E.J., Therneau, T.M.: An Introduction to Recursive Partitioning Using the Rpart Routines. Mayo Foundation, Rochester (2000)

    Google Scholar 

  4. Bowen, B.M., Hershkop, S., Keromytis, A.D., Stolfo, S.J.: Baiting inside attackers using decoy documents. In: Chen, Y., Dimitriou, T.D., Zhou, J. (eds.) SecureComm 2009. LNICST, vol. 19, pp. 51–70. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05284-2_4

    Chapter  Google Scholar 

  5. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth & Brooks, Monterey (1984)

    MATH  Google Scholar 

  6. Camiña, J.B., Hernández-Gracidas, C., Monroy, R., Trejo, L.: The Windows-users and-intruder simulations logs dataset (WUIL): an experimental framework for masquerade detection mechanisms. Expert Syst. Appl. 41, 919–930 (2014)

    Article  Google Scholar 

  7. Camiña, J.B., Monroy, R., Trejo, L.A., Medina-Perez, M.A.: Temporal and spatial locality: an abstraction for masquerade detection. IEEE Trans. Inf. Forensics Secur. 11(9), 2036–2051 (2016)

    Article  Google Scholar 

  8. Camiña, B., Monroy, R., Trejo, L.A., Sánchez, E.: Towards building a masquerade detection method based on user file system navigation. In: Batyrshin, I., Sidorov, G. (eds.) MICAI 2011. LNCS (LNAI), vol. 7094, pp. 174–186. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25324-9_15

    Chapter  Google Scholar 

  9. Camiña, J.B., Rodríguez, J., Monroy, R.: Towards a masquerade detection system based on user’s tasks. In: Stavrou, A., Bos, H., Portokalidis, G. (eds.) RAID 2014. LNCS, vol. 8688, pp. 447–465. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11379-1_22

    Chapter  Google Scholar 

  10. Chen, Y.W., Lin, C.J.: Combining SVMs with various feature selection strategies. In: Guyon, I., Nikravesh, M., Gunn, S., Zadeh, L.A. (eds.) Feature Extraction. STUDFUZZ, vol. 207, pp. 315–324. Springer, Berlin (2006). https://doi.org/10.1007/978-3-540-35488-8_13

    Chapter  Google Scholar 

  11. Denning, D.E.: An intrusion-detection model. IEEE Trans. Softw. Eng. 13(SE-2), 222–232 (1987)

    Article  Google Scholar 

  12. D’haeseleer, P., Forrest, S., Helman, P.: An immunological approach to change detection: algorithms, analysis, and implications. In: IEEE Symposium on Security and Privacy (1996)

    Google Scholar 

  13. Eskin, E., Arnold, A., Prerau, M., Portnoy, L., Stolfo, S.: A geometric framework for unsupervised anomaly detection. In: Barbará, D., Jajodia, S. (eds.) Applications of Data Mining in Computer Security. ADIS, vol. 6, pp. 77–101. Springer, Boston, MA (2002). https://doi.org/10.1007/978-1-4615-0953-0_4

    Chapter  Google Scholar 

  14. Gregorutti, B., Michel, B., Saint-Pierre, P.: Correlation and variable importance in random forests. Stat. Comput. 27(3), 659–678 (2017)

    Article  MathSciNet  Google Scholar 

  15. Gupta, B., Rawat, A., Jain, A., Arora, A., Dhami, N.: Analysis of various decision tree algorithms for classification in data mining. Int. J. Comput. Appl. 163(8), 15–19 (2017)

    Google Scholar 

  16. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Mach. Learn. 46, 389–422 (2002)

    Article  Google Scholar 

  17. Javitz, H.S., Valdes, A.: The SRI IDES statistical anomaly detector. In: Proceedings of IEEE Computer Society Symposium on Research in Security and Privacy, Oakland, CA, USA, pp. 316–326 (1991)

    Google Scholar 

  18. Jiang, Y., Metz, C.E., Nishikawa, R.M.: A receiver operating characteristic partial area index for highly sensitive diagnostic tests. Radiology 201(3), 745–750 (1996)

    Article  Google Scholar 

  19. Killourhy, K., Maxion, R.: Why did my detector do That?! In: Jha, S., Sommer, R., Kreibich, C. (eds.) RAID 2010. LNCS, vol. 6307, pp. 256–276. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15512-3_14

    Chapter  Google Scholar 

  20. Koerner, B.I.: Inside the cyberattack that shocked the US government, October 2016. https://www.wired.com/2016/10/inside-cyberattack-shocked-us-government/. Accessed 21 Mar 2018

  21. Kuo, Y., Huang, S.S.: Detecting stepping-stone connection using association rule mining. In: Proceedings of International Conference on Availability, Reliability, and Security, Fukuoka, pp. 90–97 (2009)

    Google Scholar 

  22. Lunt, T.F.: A survey of intrusion detection techniques. Comput. Secur. 12, 405–418 (1993)

    Article  Google Scholar 

  23. Ma, H., Bandos, A.I., Gur, D.: On the use of partial area under the ROC curve for comparison of two diagnostic tests. Biometrical J. 57, 304–320 (2015)

    Article  MathSciNet  Google Scholar 

  24. Newman, L.H.: How to protect yourself from that massive Equifax breach, September 2017. https://www.wired.com/story/how-to-protect-yourself-from-that-massive-equifax-breach/. Accessed 21 Mar 2018 (2017)

  25. Provost, F., Fawcett, T., Kohavi, R.: The case against accuracy estimation for comparing induction algorithms. In: Proceedings of the Fifteenth International Conference on Machine Learning, pp. 445–453 (1998)

    Google Scholar 

  26. Pusara, M., Brodley, C.E.: User re-authentication via mouse movements. In: Proceedings of ACM Workshop on Visualization and Data Mining Computer Security (VizSEC/DMSEC), pp. 1–8 (2004)

    Google Scholar 

  27. Quinlan, J.R.: Introduction of decision trees. Mach. Learn. 1(1), 81–106 (1986)

    Google Scholar 

  28. Salem, M.B., Stolfo, S.J.: Modeling user search behavior for masquerade detection. In: Sommer, R., Balzarotti, D., Maier, G. (eds.) RAID 2011. LNCS, vol. 6961, pp. 181–200. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23644-0_10

    Chapter  Google Scholar 

  29. Salzberg, S.L.: C4.5: programs for machine learning by J. Ross Quinlan. Morgan Kaufmann Publishers, Inc., 1993. Mach. Learn. 16(3), 235–240 (1994)

    MathSciNet  Google Scholar 

  30. Schonlau, M., DuMouchel, W., Ju, W.-H., Karr, A.F., Theus, M., Vardi, Y.: Computer intrusion: detecting masquerades. Statistic. Science 16(1), 58–74 (2001)

    MathSciNet  MATH  Google Scholar 

  31. Stolfo, S.J., Hershkop, S., Bui, L.H., Ferster, R., Wang, K.: Anomaly detection in computer security and an application to file system accesses. In: Hacid, M.-S., Murray, N.V., Raś, Z.W., Tsumoto, S. (eds.) ISMIS 2005. LNCS (LNAI), vol. 3488, pp. 14–28. Springer, Heidelberg (2005). https://doi.org/10.1007/11425274_2

    Chapter  Google Scholar 

  32. Strobl, C., Boulesteix, A.L., Kneib, T., Augustin, T., Zeileis, A.: Conditional variable importance for random forests. BMC Bioinf. 9(1), 307 (2008)

    Article  Google Scholar 

  33. Wu, H., Huang, S.S.: User behavior analysis in masquerade detection using principal component analysis. In: Proceedings of 8th International Conference on Intelligent Systems Design and Applications (ISDA), pp. 201–206 (2008)

    Google Scholar 

  34. Yang, J., Huang, S.S.: Mining TCP/IP packets to detect stepping-stone intrusion. Comput. Secur. 26(7), 479–484 (2007)

    Article  Google Scholar 

  35. Yuill, J., Zappe, M., Denning, D., Feer, F.: Honeyfiles: deceptive files for intrusion detection. In: Proceedings of the 5th Annual IEEE SMC Information Assurance Workshop (IAW 2004), pp. 116–122 (2004)

    Google Scholar 

  36. Zanero, S.: Behavioral intrusion detection. In: Aykanat, C., Dayar, T., Körpeoğlu, İ. (eds.) ISCIS 2004. LNCS, vol. 3280, pp. 657–666. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30182-0_66

    Chapter  Google Scholar 

  37. Zhang, F., Wang, Y., Wang, H.: Gradient correlation: are ensemble classifiers more robust against evasion attacks in practical settings? In: Hacid, H., Cellary, W., Wang, H., Paik, H.-Y., Zhou, R. (eds.) WISE 2018. LNCS, vol. 11233, pp. 96–110. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02922-7_7

    Chapter  Google Scholar 

Download references

Acknowledgment

We would like to thank Raúl Monroy for creating and sharing the WUIL dataset [6]. This work was supported in part by the National Science Foundation (NSF) under grants NSF-1659755, NSF-1433817, and NSF-1356705.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zechun Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, SH.S., Cao, Z., Raines, C.E., Yang, M.N., Simon, C. (2019). Detecting Intruders by User File Access Patterns. In: Liu, J., Huang, X. (eds) Network and System Security. NSS 2019. Lecture Notes in Computer Science(), vol 11928. Springer, Cham. https://doi.org/10.1007/978-3-030-36938-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36938-5_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36937-8

  • Online ISBN: 978-3-030-36938-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics