[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Superconvergence of Iterated Galerkin Method for a Class of Nonlinear Fredholm Integral Equations

  • Conference paper
  • First Online:
Recent Advances in Intelligent Information Systems and Applied Mathematics (ICITAM 2019)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 863))

  • 700 Accesses

Abstract

In this paper, we consider the Galerkin and iterated Galerkin methods for solving Fredholm-Hammestein integral equations with a Green’s kernel, whose first derivative has singularity. We obtain error bounds and convergence rates for both the Galerkin and iterated Galerkin methods using graded mesh. In fact, by choosing the grading exponent appropriately, we obtain superconvergence results in iterated Galerkin method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahues, M., Largillier, A., Limaye, B.V.: Spectral Computations for Bounded Operators. Chapman and Hall/CRC, New York (2001)

    Book  Google Scholar 

  2. Anselone, P.M.: Collectively Compact Operator Approximation Theory and Application to Integral Equations. Prentice Hall, Englewood Cliffs (1971)

    MATH  Google Scholar 

  3. Atkinson, K.E., Potra, F.A.: Projection and iterated projection methods for nonlinear integral equations. SIAM J. Numer. Anal. 24(6), 1352–1373 (1987)

    Article  MathSciNet  Google Scholar 

  4. Atkinson, K.E.: The Numerical Solution of Integral Equations of the Second Kind. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  5. Brunner, H.: The numerical solution of weakly singular Volterra integral equations by collocation on graded meshes. Math. Comput. 45(172), 417–437 (1985)

    Article  MathSciNet  Google Scholar 

  6. Cen, Z.: Numerical study for a class of singular two-point boundary value problems using Green’s functions. Appl. Math. Comput. 183(1), 10–16 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Chatelin, F.: Spectral Approximation of Linear Operators CI. SIAM, Philadelphia (1983)

    MATH  Google Scholar 

  8. Ben-Yu, G.: Spectral Methods and Their Applications. World Scientific, Singapore (1998)

    Book  Google Scholar 

  9. Gray, B.: The distribution of heat sources in the human head-theoretical considerations. J. Theor. Biol. 82(3), 473–476 (1980)

    Article  Google Scholar 

  10. Kaneko, H., Xu, Y.: Superconvergence of the iterated Galerkin methods for Hammerstein equations. SIAM J. Numer. Anal. 33(3), 1048–1064 (1996)

    Article  MathSciNet  Google Scholar 

  11. Lin, S.: Oxygen diffusion in a spherical cell with nonlinear oxygen uptake kinetics. J. Theor. Biol. 60(2), 449–457 (1976)

    Article  Google Scholar 

  12. Adomian, G.: Solution of the Thomas-Fermi equation. Appl. Math. Lett. 11(3), 131–133 (1998)

    Article  MathSciNet  Google Scholar 

  13. Singh, R., Kumar, J., Nelakanti, G.: Numerical solution of singular boundary value problems using Green’s function and improved decomposition method. J. Appl. Math. Comput. 43(1–2), 409–425 (2013)

    Article  MathSciNet  Google Scholar 

  14. Shen, J., Tang, T.: Spectral and High-Order Methods with Applications. Science Press, Beijing (2006)

    MATH  Google Scholar 

  15. Shen, J., Tang, T., Wang, L.: Spectral Methods: Algorithms, Analysis and Applications. Springer Series in Computational Mathematics. Springer, New York (2011)

    Book  Google Scholar 

  16. Vainikko, G.M.: A perturbed Galerkin method and the general theory of approximate methods for nonlinear equations. USSR Comput. Math. Math. Phys. 7(4), 1–41 (1967)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Payel Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Das, P., Nahid, N., Nelakanti, G. (2020). Superconvergence of Iterated Galerkin Method for a Class of Nonlinear Fredholm Integral Equations. In: Castillo, O., Jana, D., Giri, D., Ahmed, A. (eds) Recent Advances in Intelligent Information Systems and Applied Mathematics. ICITAM 2019. Studies in Computational Intelligence, vol 863. Springer, Cham. https://doi.org/10.1007/978-3-030-34152-7_5

Download citation

Publish with us

Policies and ethics