Abstract
While short read aligners, which predominantly use the FM-index, are able to easily index one or a few human genomes, they do not scale well to indexing databases containing thousands of genomes. To understand why, it helps to examine the main components of the FM-index in more detail, which is a rank data structure over the Burrows-Wheeler Transform (\({\mathsf{BWT}}\)) of the string that will allow us to find the interval in the string’s suffix array (\({\mathsf{SA}}\)) containing pointers to starting positions of occurrences of a given pattern; second, a sample of the \({\mathsf{SA}}\) that—when used with the rank data structure—allows us access to the \({\mathsf{SA}}\). The rank data structure can be kept small even for large genomic databases, by run-length compressing the \({\mathsf{BWT}}\), but until recently there was no means known to keep the \({\mathsf{SA}}\) sample small without greatly slowing down access to the \({\mathsf{SA}}\). Now that Gagie et al. (SODA 2018) have defined an \({\mathsf{SA}}\) sample that takes about the same space as the run-length compressed \({\mathsf{BWT}}\)—we have the design for efficient FM-indexes of genomic databases but are faced with the problem of building them. In 2018 we showed how to build the \({\mathsf{BWT}}\) of large genomic databases efficiently (WABI 2018) but the problem of building Gagie et al.’s \({\mathsf{SA}}\) sample efficiently was left open. We compare our approach to state-of-the-art methods for constructing the \({\mathsf{SA}}\) sample, and demonstrate that it is the fastest and most space-efficient method on highly repetitive genomic databases. Lastly, we apply our method for indexing partial and whole human genomes and show that it improves over Bowtie with respect to both memory and time.
Availability: The implementations of our methods can be found at https://gitlab.com/manzai/Big-BWT (BWT and SA sample construction) and at https://github.com/alshai/r-index (indexing).
A. Kuhnle and T. Mun—Equal contribution, ordered alphabetically.
C. Boucher, T. Gagie, B. Langmead and G. Manzini—Equal contribution, ordered alphabetically.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
With the \({\mathsf{SA}}\) sample of Gagie et al. [11], this index is termed the r-index.
- 2.
Given a sequence (string) S[1, n] over an alphabet \(\varSigma = \{1,\ldots ,\sigma \}\), a character \(c \in \varSigma \), and an integer i, \(\textsf {rank}_c(S,i)\) is the number of times that c appears in S[1, i].
- 3.
Sampled means that only some fraction of entries of the suffix array are stored.
- 4.
For technical reasons, the string S must terminate with w copies of lexicographically least \(\$\) symbol.
References
Bannai, H., Gagie, T., I, T.: Online LZ77 parsing and matching statistics with RLBWTs. In: Proceedings of the 29th Annual Symposium on Combinatorial Pattern Matching, (CPM), vol. 105, pp. 7:1–7:12 (2018)
Boucher, C., Gagie, T., Kuhnle, A., Manzini, G.: Prefix-free parsing for building big BWTs. In: Proceedings of 18th International Workshop on Algorithms in Bioinformatics, WABI, vol. 113, pp. 2:1–2:16 (2018)
Burrows, M., Wheeler, D.J.: A block sorting lossless data compression algorithm. Technical report 124. Digital Equipment Corporation (1994)
The 1000 Genomes Project Consortium: A global reference for human genetic variation. Nature 526(7571), 68–74 (2015)
Danek, A., Deorowicz, S., Grabowski, S.: Indexes of large genome collections on a PC. PLoS ONE 9(10), e109384 (2014)
Deorowicz, S., Kokot, M., Grabowski, S., Debudaj-Grabysz, A.: KMC 2: fast and resource-frugal k-mer counting. Bioinformatics 31(10), 1569–1576 (2015)
Garrison, E., et al.: Variation graph toolkit improves read mapping by representing genetic variation in the reference. Nat. Biotechnol. 36(9), 875–879 (2018)
Ferrada, H., Gagie, T., Hirvola, T., Puglisi, S.J.: Hybrid indexes for repetitive datasets. Philos. Trans. Roy. Soc. A: Math. Phys. Eng. Sci. 372(2016), 1–9 (2014)
Ferrada, H., Kempa, D., Puglisi, S.J.: Hybrid indexing revisited. In: Proceedings of the 21st Algorithm Engineering and Experiments, ALENEX, pp. 1–8 (2018)
Ferragina, P., Manzini, G.: Opportunistic data structures with applications. In: Proceedings of the 41st Annual Symposium on Foundations of Computer Science, FOCS, pp. 390–398 (2000)
Gagie, T., Navarro, G., Prezza, N.: Optimal-time text indexing in BWT-runs bounded space. In: Proceedings of the 29th Annual Symposium on Discrete Algorithms, SODA, pp. 1459–1477 (2018)
Gagie, T., Puglisi, S.J.: Searching and indexing genomic databases via kernelization. Front. Bioeng. Biotechnol. 3, 10–13 (2015)
Li, H., Durbin, R.: Fast and accurate short read alignment with Burrows-Wheeler Transform. Bioinformatics 25, 1754–1760 (2009)
Huang, L., Popic, V., Batzoglou, S.: Short read alignment with populations of genomes. Bioinformatics 29(13), i361–i370 (2013)
Jain, M., et al.: Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat. Biotechnol. 36(4), 338–345 (2018)
Jeong-Sun, S., et al.: De novo assembly and phasing of a Korean human genome. Nature 538(7624), 243–247 (2016)
Kärkkäinen, J., Kempa, D., Puglisi, S.J.: Parallel external memory suffix sorting. In: Cicalese, F., Porat, E., Vaccaro, U. (eds.) CPM 2015. LNCS, vol. 9133, pp. 329–342. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19929-0_28
Langmead, B., Salzberg, S.L.: Fast gapped-read alignment with Bowtie 2. Nat. Methods 9(4), 357 (2012)
Langmead, B., Trapnell, C., Pop, M., Salzberg, S.L.: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2008)
Levy, S., et al.: The diploid genome sequence of an individual human. PLoS Biol. 5(10), e254 (2007)
Li, R., et al.: SOAP2: an improved tool for short read alignment. Bioinformatics 25(15), 1966–1967 (2009)
Li, H.: Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:1303.3997 [q-bio], March 2013
Maciuca, S., del Ojo Elias, C., McVean, G., Iqbal, Z.: A natural encoding of genetic variation in a Burrows-Wheeler Transform to enable mapping and genome inference. In: Frith, M., Storm Pedersen, C.N. (eds.) WABI 2016. LNCS, vol. 9838, pp. 222–233. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43681-4_18
Mäkinen, V., Navarro, G., Sirén, J., Välimäki, N.: Storage and retrieval of highly repetitive sequence collections. J. Comput. Biol. 17(3), 281–308 (2010)
Peng, Y., Leung, H.C.M., Yiu, S.M., Chin, F.Y.L.: IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28(11), 1420–1428 (2012)
Policriti, A., Prezza, N.: LZ77 computation based on the run-length encoded BWT. Algorithmica 80(7), 1986–2011 (2018)
Schneeberger, K., et al.: Simultaneous alignment of short reads against multiple genomes. Genome Biol. 10(9), R98 (2009)
Shi, L., et al.: Long-read sequencing and de novo assembly of a Chinese genome. Nat. Commun. 7, 12065 (2016)
Sirén, J., Välimäki, N., Mäkinen, V.: Indexing graphs for path queries with applications in genome research. IEEE/ACM Trans. Comput. Biol. Bioinform. 11(2), 375–388 (2014)
Steinberg, K.M., et al.: Single haplotype assembly of the human genome from a hydatidiform mole. Genome Res. 24, 2066–2076 (2014). p. gr.180893.114
Stevens, E.L., et al.: The public health impact of a publically available, environmental database of microbial genomes. Front. Microbiol. 8, 808 (2017)
Valenzuela, D., Norri, T., Välimäki, N., Pitkänen, E., Mäkinen, V.: Towards pan-genome read alignment to improve variation calling. BMC Genomics 19(2), 87 (2018)
Valenzuela, D., Mäkinen, V.: CHIC: a short read aligner for pan-genomic references. Technical report, biorxiv.org (2017)
Wandelt, S., Starlinger, J., Bux, M., Leser, U.: RCSI: scalable similarity search in thousand(s) of genomes. Proc. VLDB Endow. 6(13), 1534–1545 (2013)
Acknowledgements
AK and CB were supported by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health (1R01AI141810-01) and NSF-IIS (1618814). TM and BL were supported by the National Institutes of Health (R01GM118568) and NSF-IIS (1349906). TG was supported by FONDECYT grant 1171058 Compression-aware algorithmics. GM was partially supported by PRIN grant 201534HNXC and by INdAM-GNCS Project 2019 Innovative methods for the solution of medical and biological big data.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Kuhnle, A., Mun, T., Boucher, C., Gagie, T., Langmead, B., Manzini, G. (2019). Efficient Construction of a Complete Index for Pan-Genomics Read Alignment. In: Cowen, L. (eds) Research in Computational Molecular Biology. RECOMB 2019. Lecture Notes in Computer Science(), vol 11467. Springer, Cham. https://doi.org/10.1007/978-3-030-17083-7_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-17083-7_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-17082-0
Online ISBN: 978-3-030-17083-7
eBook Packages: Computer ScienceComputer Science (R0)