[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

An Integration-Based Approach to Pattern Clustering and Classification

  • Conference paper
  • First Online:
AI*IA 2018 – Advances in Artificial Intelligence (AI*IA 2018)

Abstract

Methods based on information theory, such as the Relevance Index (RI), have been employed to study complex systems for their ability to detect significant groups of variables, well integrated among one another and well separated from the others, which provide a functional block description of the system under analysis. The integration (or zI in its standardized form) is a metric that can express the significance of a group of variables for the system under consideration: the higher the zI, the more significant the group. In this paper, we use this metric for an unusual application to a pattern clustering and classification problem. The results show that the centroids of the clusters of patterns identified by the method are effective for distance-based classification algorithms. We compare such a method with other conventional classification approaches to highlight its main features and to address future research towards the refinement of its accuracy and computational efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. 1.

    https://developer.nvidia.com.

  2. 2.

    Patterns obtained by both strategies are represented with the tags 005, 010, 015, 020 and 030, even if these numbers represent the actual percent noise levels only for the first set.

  3. 3.

    Downloadable at ftp://ftp.ce.unipr.it/pub/cagnoni/license_plate.

References

  1. Aldana-Bobadilla, E., Kuri-Morales, A.: A clustering method based on the maximum entropy principle. Entropy 17(1), 151–180 (2015)

    Article  Google Scholar 

  2. Bouckaert, R.R., et al.: WEKA manual for version 3-7-8. University of Waikato, NZ (2013)

    Google Scholar 

  3. Cagnoni, S., Valli, G.: OSLVQ: a training strategy for optimum-size learning vector quantization classifiers. In: IEEE International Conference on Neural Networks, IEEE WCCI 1994, vol. 2, pp. 762–765 (1994)

    Google Scholar 

  4. D’Addese, G.: Individuazione di Sottoinsiemi Rilevanti in Sistemi Dinamici. Bachelor thesis, University of Modena and Reggio Emilia, Italy (2017)

    Google Scholar 

  5. Faivishevsky, L., Goldberger, J.: A nonparametric information theoretic clustering algorithm. In: Proceedings of the 27th International Conference on Machine Learning ICML 2010, pp. 351–358 (2010)

    Google Scholar 

  6. Filisetti, A., Villani, M., Roli, A., Fiorucci, M., Serra, R.: Exploring the organisation of complex systems through the dynamical interactions among their relevant subsets. In: Andrews, P., et al. (eds.) ECAL 2015, pp. 286–293. The MIT Press, Cambridge (2015)

    Google Scholar 

  7. Kohonen, T.: Learning vector quantization. In: Arbib, M.A. (ed.) The Handbook of Brain Theory and Neural Networks, pp. 537–540. MIT Press, Cambridge (1998)

    Google Scholar 

  8. Müller, A.C., Nowozin, S., Lampert, C.H.: Information theoretic clustering using minimum spanning trees. In: Pinz, A., Pock, T., Bischof, H., Leberl, F. (eds.) DAGM/OAGM 2012. LNCS, vol. 7476, pp. 205–215. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32717-9_21

    Chapter  Google Scholar 

  9. Sani, L., et al.: Efficient search of relevant structures in complex systems. In: Adorni, G., Cagnoni, S., Gori, M., Maratea, M. (eds.) AI*IA 2016. LNCS (LNAI), vol. 10037, pp. 35–48. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49130-1_4

    Chapter  Google Scholar 

  10. Silvestri, G., et al.: Searching relevant variable subsets in complex systems using k-means PSO. In: Pelillo, M., Poli, I., Roli, A., Serra, R., Slanzi, D., Villani, M. (eds.) WIVACE 2017. CCIS, vol. 830, pp. 308–321. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78658-2_23

    Chapter  Google Scholar 

  11. Tononi, G., McIntosh, A., Russel, D., Edelman, G.: Functional clustering: Identifying strongly interactive brain regions in neuroimaging data. Neuroimage 7, 133–149 (1998)

    Article  Google Scholar 

  12. Tononi, G., Sporns, O., Edelman, G.M.: A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc. Nat. Acad. Sci. 91(11), 5033–5037 (1994)

    Article  Google Scholar 

  13. Ver Steeg, G., Galstyan, A., Sha, F., DeDeo, S.: Demystifying information-theoretic clustering. In: Proceedings of the 31st International Conference on International Conference on Machine Learning ICML 2014, pp. I-19–I-27 (2014)

    Google Scholar 

  14. Vicari, E., et al.: GPU-based parallel search of relevant variable sets in complex systems. In: Rossi, F., Piotto, S., Concilio, S. (eds.) WIVACE 2016. CCIS, vol. 708, pp. 14–25. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57711-1_2

    Chapter  Google Scholar 

  15. Villani, M., Roli, A., Filisetti, A., Fiorucci, M., Poli, I., Serra, R.: The search for candidate relevant subsets of variables in complex systems. Artif. Life 21(4), 412–431 (2015)

    Article  Google Scholar 

  16. Villani, M., et al.: A relevance index method to infer global properties of biological networks. In: Pelillo, M., Poli, I., Roli, A., Serra, R., Slanzi, D., Villani, M. (eds.) WIVACE 2017. CCIS, vol. 830, pp. 129–141. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78658-2_10

    Chapter  Google Scholar 

  17. Villani, M., et al.: An iterative information-theoretic approach to the detection of structures in complex systems. Complexity (2018, in press)

    Google Scholar 

  18. Wang, M., Sha, F.: Information theoretical clustering via semidefinite programming. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 761–769 (2011)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Chiara Lasagni for the many tests and for helping us reach full awareness of some of the finer details of the method.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Pecori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sani, L., D’Addese, G., Pecori, R., Mordonini, M., Villani, M., Cagnoni, S. (2018). An Integration-Based Approach to Pattern Clustering and Classification. In: Ghidini, C., Magnini, B., Passerini, A., Traverso, P. (eds) AI*IA 2018 – Advances in Artificial Intelligence. AI*IA 2018. Lecture Notes in Computer Science(), vol 11298. Springer, Cham. https://doi.org/10.1007/978-3-030-03840-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03840-3_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03839-7

  • Online ISBN: 978-3-030-03840-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics