Abstract
Methods based on information theory, such as the Relevance Index (RI), have been employed to study complex systems for their ability to detect significant groups of variables, well integrated among one another and well separated from the others, which provide a functional block description of the system under analysis. The integration (or zI in its standardized form) is a metric that can express the significance of a group of variables for the system under consideration: the higher the zI, the more significant the group. In this paper, we use this metric for an unusual application to a pattern clustering and classification problem. The results show that the centroids of the clusters of patterns identified by the method are effective for distance-based classification algorithms. We compare such a method with other conventional classification approaches to highlight its main features and to address future research towards the refinement of its accuracy and computational efficiency.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
Notes
- 1.
- 2.
Patterns obtained by both strategies are represented with the tags 005, 010, 015, 020 and 030, even if these numbers represent the actual percent noise levels only for the first set.
- 3.
Downloadable at ftp://ftp.ce.unipr.it/pub/cagnoni/license_plate.
References
Aldana-Bobadilla, E., Kuri-Morales, A.: A clustering method based on the maximum entropy principle. Entropy 17(1), 151–180 (2015)
Bouckaert, R.R., et al.: WEKA manual for version 3-7-8. University of Waikato, NZ (2013)
Cagnoni, S., Valli, G.: OSLVQ: a training strategy for optimum-size learning vector quantization classifiers. In: IEEE International Conference on Neural Networks, IEEE WCCI 1994, vol. 2, pp. 762–765 (1994)
D’Addese, G.: Individuazione di Sottoinsiemi Rilevanti in Sistemi Dinamici. Bachelor thesis, University of Modena and Reggio Emilia, Italy (2017)
Faivishevsky, L., Goldberger, J.: A nonparametric information theoretic clustering algorithm. In: Proceedings of the 27th International Conference on Machine Learning ICML 2010, pp. 351–358 (2010)
Filisetti, A., Villani, M., Roli, A., Fiorucci, M., Serra, R.: Exploring the organisation of complex systems through the dynamical interactions among their relevant subsets. In: Andrews, P., et al. (eds.) ECAL 2015, pp. 286–293. The MIT Press, Cambridge (2015)
Kohonen, T.: Learning vector quantization. In: Arbib, M.A. (ed.) The Handbook of Brain Theory and Neural Networks, pp. 537–540. MIT Press, Cambridge (1998)
Müller, A.C., Nowozin, S., Lampert, C.H.: Information theoretic clustering using minimum spanning trees. In: Pinz, A., Pock, T., Bischof, H., Leberl, F. (eds.) DAGM/OAGM 2012. LNCS, vol. 7476, pp. 205–215. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32717-9_21
Sani, L., et al.: Efficient search of relevant structures in complex systems. In: Adorni, G., Cagnoni, S., Gori, M., Maratea, M. (eds.) AI*IA 2016. LNCS (LNAI), vol. 10037, pp. 35–48. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49130-1_4
Silvestri, G., et al.: Searching relevant variable subsets in complex systems using k-means PSO. In: Pelillo, M., Poli, I., Roli, A., Serra, R., Slanzi, D., Villani, M. (eds.) WIVACE 2017. CCIS, vol. 830, pp. 308–321. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78658-2_23
Tononi, G., McIntosh, A., Russel, D., Edelman, G.: Functional clustering: Identifying strongly interactive brain regions in neuroimaging data. Neuroimage 7, 133–149 (1998)
Tononi, G., Sporns, O., Edelman, G.M.: A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc. Nat. Acad. Sci. 91(11), 5033–5037 (1994)
Ver Steeg, G., Galstyan, A., Sha, F., DeDeo, S.: Demystifying information-theoretic clustering. In: Proceedings of the 31st International Conference on International Conference on Machine Learning ICML 2014, pp. I-19–I-27 (2014)
Vicari, E., et al.: GPU-based parallel search of relevant variable sets in complex systems. In: Rossi, F., Piotto, S., Concilio, S. (eds.) WIVACE 2016. CCIS, vol. 708, pp. 14–25. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57711-1_2
Villani, M., Roli, A., Filisetti, A., Fiorucci, M., Poli, I., Serra, R.: The search for candidate relevant subsets of variables in complex systems. Artif. Life 21(4), 412–431 (2015)
Villani, M., et al.: A relevance index method to infer global properties of biological networks. In: Pelillo, M., Poli, I., Roli, A., Serra, R., Slanzi, D., Villani, M. (eds.) WIVACE 2017. CCIS, vol. 830, pp. 129–141. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78658-2_10
Villani, M., et al.: An iterative information-theoretic approach to the detection of structures in complex systems. Complexity (2018, in press)
Wang, M., Sha, F.: Information theoretical clustering via semidefinite programming. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 761–769 (2011)
Acknowledgments
The authors would like to thank Chiara Lasagni for the many tests and for helping us reach full awareness of some of the finer details of the method.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Sani, L., D’Addese, G., Pecori, R., Mordonini, M., Villani, M., Cagnoni, S. (2018). An Integration-Based Approach to Pattern Clustering and Classification. In: Ghidini, C., Magnini, B., Passerini, A., Traverso, P. (eds) AI*IA 2018 – Advances in Artificial Intelligence. AI*IA 2018. Lecture Notes in Computer Science(), vol 11298. Springer, Cham. https://doi.org/10.1007/978-3-030-03840-3_27
Download citation
DOI: https://doi.org/10.1007/978-3-030-03840-3_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-03839-7
Online ISBN: 978-3-030-03840-3
eBook Packages: Computer ScienceComputer Science (R0)