[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Learning Morphological Operators for Depth Completion

  • Conference paper
  • First Online:
Advanced Concepts for Intelligent Vision Systems (ACIVS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11182))

Abstract

Depth images generated by direct projection of LiDAR point clouds on the image plane suffer from a great level of sparsity which is difficult to interpret by classical computer vision algorithms. We propose a method for completing sparse depth images in a semantically accurate manner by training a novel morphological neural network. Our method approximates morphological operations by Contraharmonic Mean Filter layers which are easily trained in a contemporary deep learning framework. An early fusion U-Net architecture then combines dilated depth channels and RGB using multi-scale processing. Using a large scale RGB-D dataset we are able to learn the optimal morphological and convolutional filter shapes that produce an accurate and fully sampled depth image at the output. Independent experimental evaluation confirms that our method outperforms classical image restoration techniques as well as current state-of-the-art neural networks. The resulting depth images preserve object boundaries and can easily be used to augment various tasks in intelligent vehicles perception systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=stereo.

  2. 2.

    www.cvlibs.net/datasets/kitti/eval_depth.php?benchmark=depth_completion.

References

  1. Dimitrievski, M., Veelaert, P., Philips, W.: Semantically aware multilateral filter for depth upsampling in automotive LiDAR point clouds. In: 2017 IEEE Intelligent Vehicles Symposium (IV), pp. 1058–1063, June 2017

    Google Scholar 

  2. Premebida, C., Garrote, L., Asvadi, A., Ribeiro, A.P., Nunes, U.: High-resolution LiDAR-based depth mapping using bilateral filter. CoRR, abs/1606.05614 (2016)

    Google Scholar 

  3. Ku, J., Harakeh, A., Waslander, S.L.: In defense of classical image processing: fast depth completion on the CPU. CoRR, abs/1802.00036 (2018)

    Google Scholar 

  4. Schneider, N., Schneider, L., Pinggera, P., Franke, U., Pollefeys, M., Stiller, C.: Semantically guided depth upsampling. In: Rosenhahn, B., Andres, B. (eds.) GCPR 2016. LNCS, vol. 9796, pp. 37–48. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45886-1_4

    Chapter  Google Scholar 

  5. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. CoRR, abs/1411.4038 (2014)

    Google Scholar 

  6. Uhrig, J., Schneider, N., Schneider, L., Franke, U., Brox, T., Geiger, A.: Sparsity invariant CNNs. CoRR, abs/1708.06500 (2017)

    Google Scholar 

  7. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. CoRR, abs/1505.04597 (2015)

    Google Scholar 

  8. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. CoRR, abs/1511.00561 (2015)

    Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR, abs/1512.03385 (2015)

    Google Scholar 

  10. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks, In: Teh, Y.W., Titterington, M. (eds.) Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, PMLR, vol. 9, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010, pp. 249–256 (2010)

    Google Scholar 

  11. Chen, X., Ma, H., Wan, J., Li, B., Xia, T.: Multi-view 3D object detection network for autonomous driving. CoRR, abs/1611.07759 (2016)

    Google Scholar 

  12. Masci, J., Angulo, J., Schmidhuber, J.: A learning framework for morphological operators using counter-harmonic mean. CoRR, abs/1212.2546 (2012)

    Google Scholar 

  13. Vliet, L.J.V.: Robust local max-min filters by normalized power-weighted filtering. In: 2004 Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, vol. 1, pp. 696–699, August 2004

    Google Scholar 

  14. Angulo, J.: Pseudo-morphological image diffusion using the counter-harmonic paradigm. In: Blanc-Talon, J., Bone, D., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2010. LNCS, vol. 6474, pp. 426–437. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17688-3_40

    Chapter  Google Scholar 

  15. Vedaldi, A., Lenc, K.: MatConvNet - convolutional neural networks for MATLAB. In: Proceedings of the ACM International Conference on Multimedia (2015)

    Google Scholar 

  16. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR, abs/1412.6980 (2014)

    Google Scholar 

  17. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the KITTI vision benchmark suite. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3354–3361, June 2012

    Google Scholar 

  18. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Robot. Res. (IJRR) 32, 1231–1237 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

“The Titan Xp used for this research was donated by the NVIDIA Corporation through the Academic Grant Program.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Dimitrievski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dimitrievski, M., Veelaert, P., Philips, W. (2018). Learning Morphological Operators for Depth Completion. In: Blanc-Talon, J., Helbert, D., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2018. Lecture Notes in Computer Science(), vol 11182. Springer, Cham. https://doi.org/10.1007/978-3-030-01449-0_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01449-0_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01448-3

  • Online ISBN: 978-3-030-01449-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics