[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Databases and Artificial Intelligence

  • Chapter
  • First Online:
A Guided Tour of Artificial Intelligence Research

Abstract

This chapter presents some noteworthy works which show the links between Databases and Artificial Intelligence. More precisely, after an introduction, Sect. 2 presents the seminal work on “logic and databases” which opened a wide research field at the intersection of databases and artificial intelligence. The main results concern the use of logic for database modeling. Then, in Sect. 3, we present different problems raised by integrity constraints and the way logic contributed to formalizing and solving them. In Sect. 4, we sum up some works related to queries with preferences. Section 5 finally focuses on the problematic of database integration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 119.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 149.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Remember that by convention, we take the same symbol to represent a constant and the individual which interprets it.

  2. 2.

    The relational model has been chosen in the introduction but models such as non normalized, complex value data and semi-structured models are concerned as well.

  3. 3.

    Functional dependencies help in a significant way the optimization of data sorting which arises when evaluating SQL group by, order by and distinct command (Simmen et al. 1996).

  4. 4.

    http://www.w3.org/2004/OWL/.

  5. 5.

    http://www.w3.org/TR/owl2-overview/.

  6. 6.

    http://www.w3.org/TR/rdf-schema/.

References

  • Abdallah N, Goasdoué F, Rousset MC (2009) Dl-Lite$_{\cal{R}} $ in the light of propositional logic for decentralized data management. In: International joint conference on artificial intelligence (IJCAI)

    Google Scholar 

  • Abiteboul S, Duschka OM (1998) Complexity of answering queries using materialized views. In: ACM (ed) PODS ’98. Proceedings of the seventeenth ACM SIG-SIGMOD-SIGART symposium on principles of database systems, ACM Press, New York, NY 10036, USA

    Google Scholar 

  • Abiteboul S, Herr L, van den Bussche J (1999) Temporal connectives versus explicit timestamps to query temporal databases. J Comput Syst Sci 58(1):54–68

    Article  MathSciNet  MATH  Google Scholar 

  • Abiteboul S, Hull R, Vianu V (1995) Foundations of databases. Addison-Wesley

    Google Scholar 

  • Agrawal R, Wimmers E (2000) A framework for expressing and combining preferences. Proc SIGMOD 2000:297–306

    Google Scholar 

  • Alechina N, Demri S, de Rijke M (2003) A modal perspective on path constraints. J Log Comput 13(6):939–956

    Article  MathSciNet  MATH  Google Scholar 

  • Arenas M (2009) Xml integrity constraints. In: Encyclopedia of database systems. Springer, pp 3592–3597

    Google Scholar 

  • Armstrong W (1974) Dependency structures of data base relationships. In: Proceedings of IFIP congress, North Holland, Amsterdam, pp 580–583

    Google Scholar 

  • Baader F, Calvanese D, McGuinness D, Nardi D, Patel-Schneider PF (eds) (2003) The description logic handbook: theory, implementation, and applications. Cambridge University Press

    Google Scholar 

  • Beeri C, Levy A, Rousset MC (1997) Rewriting queries using views in description logics, editor = ACM. In: PODS ’97, Proceedings of the sixteenth ACM SIG-SIGMOD-SIGART symposium on principles of database systems, May 12–14, 1997. ACM Press, Tucson, Arizona, New York, NY 10036, USA

    Google Scholar 

  • Beneventano D, Bergamaschi S, Sartori C (2003) Description logics for semantic query optimization in object-oriented database systems. ACM Trans Database Syst 28:1–50

    Article  Google Scholar 

  • Bergamaschi S, Sartori C, Beneventano D, Vincini M (1997) Odb-tools: a description logics based tool for schema validation and semantic query optimization in object oriented databases. In: AI*IA, pp 435–438

    Google Scholar 

  • Berners-Lee T, Hendler J, OLassila (2001) The semantic web. Scientific American, p 279

    Google Scholar 

  • Bidoit N, de Amo S (1998) A first step towards implementing dynamic algebraic dependences. Theor Comput Sci 190(2):115–149

    Article  MathSciNet  MATH  Google Scholar 

  • Bidoit N, Amo SD (1998) A first step towards implementing dynamic algebraic dependences. TCS 190(2):115–149

    Article  MathSciNet  MATH  Google Scholar 

  • Bidoit N, Colazzo D (2007) Testing xml constraint satisfiability. Electr Notes Theor Comput Sci 174(6):45–61

    Article  MATH  Google Scholar 

  • Bidoit N, Objois M (2009) Fixpoint and while temporal query languages. J Log Comput 19(2):369–404

    Article  MathSciNet  MATH  Google Scholar 

  • Bidoit N, de Amo S, Segoufin L (2004) Order independent temporal properties. J Log Comput 14(2):277–298

    Article  MathSciNet  MATH  Google Scholar 

  • Bidoit N, Amo SD (1999) Implicit temporal query languages: towards completeness. In: Proceedings of the 19th conference on foundations of software technology and theoretical computer science, pp 245–257

    Google Scholar 

  • Bidoit N, Collet C (2001) Contraintes d’intégrité et règles actives. In: Bases de Données et Internet (Modèles, Langages, et systèmes). Hermès, pp 47–74

    Google Scholar 

  • Bőrzsőnyi S, Kossmann D, Stocker K (2001) The skyline operator. In: Proceedings of the 17th IEEE international conference on data engineering, pp 421–430

    Google Scholar 

  • Bosc P, Pivert O (1995) SQLf: a relational database language for fuzzy querying. IEEE Trans Fuzzy Syst 3(1):1–17

    Article  Google Scholar 

  • Bosc P, Buckles B, Petry F, Pivert O (1999) Fuzzy sets in approximate reasoning and information systems—the handbook of fuzzy sets series. Chap Fuzzy databases. Kluwer Academic Publishers, pp 403–468

    Google Scholar 

  • Boutilier C, Brafman R, Domshlak C, Hoos H, Poole D (2004) CP-nets: a tool for representing and reasoning with conditional ceteris paribus preference statements. J Artif Intell Res (JAIR) 21:135–191

    Article  MathSciNet  MATH  Google Scholar 

  • Brafman R, Domshlak C (2004) Database preference queries revisited TR2004-1934. Computing and information science, Tech Rep. Cornell University

    Google Scholar 

  • Buneman P, Fan W, Weinstein S (2003) Interaction between path and type constraints. ACM Trans Comput Log 4(4):530–577

    Article  MathSciNet  MATH  Google Scholar 

  • Buneman P, Davidson SB, Fan W, Hara CS, Tan WC (2001) Reasoning about keys for xml. In: DBPL, pp 133–148

    Google Scholar 

  • Calvanese D, Giacomo GD, Lenzerini M (1999) Representing and reasoning on xml documents: a description logic approach. J Log Comput 9(3):295–318

    Article  MathSciNet  MATH  Google Scholar 

  • Calvanese D, Giacomo GD, Lembo D, Lenzerini M, Rosati R (2007) Tractable reasoning and efficient query answering in description logics: the dl-lite family. J Autom Reason (JAR) 39(3):385–429

    Article  MathSciNet  MATH  Google Scholar 

  • Calvanese D, De Giacomo G, Lenzerini M (2000a) Answering queries using views in description logics. In: Proceedings of AAAI 2000

    Google Scholar 

  • Calvanese D, De Giacomo G, Lenzerini M, Vardi M (2000b) Answering regular path queries using views. In: Proceedings of ICDE 2000

    Google Scholar 

  • Calvanese D, Lenzereni M, Nardi D (1998) Description logics for conceptual data modeling. In: Logics for databases and information systems. Kluwer

    Google Scholar 

  • Carmo J, Demolombe R, Jones A (1997) Toward a uniform logical representation of different kinds of integrity constraints. In: Proceedings of ECSQARU-FAPR’97, LNAI 1244. Springer, pp 614–620

    Google Scholar 

  • Chakravarthy U, Grant J, Minker J (1990) Logic-based approach to semantic query optimization. TODS 15(2):162–207

    Article  Google Scholar 

  • Chan C, Jagadish H, Tan K, Tung A, Zhang Z (2006) Finding k-dominant skylines in high dimensional space. Proc of SIGMOD 2006:503–514

    Google Scholar 

  • Chan C, Jagadish H, Tan K, Tung A, Zhang Z (2006b) On high dimensional skylines. In: Proceedings of EDBT 2006, LNCS 3896, pp 478–495

    Google Scholar 

  • Chaudhuri S, Gravano L (1999) Evaluating top-k selection queries. In: Proceedings of the 25th VLDB conference, pp 399–410

    Google Scholar 

  • Chomicki J (1995) Efficient checking of temporal integrity constraints using bounded history encoding. ACM Trans Database Syst 20(2):149–186

    Article  Google Scholar 

  • Chomicki J (2003) Preference formulas in relational queries. ACM Trans Database Syst 28:1–40

    Article  Google Scholar 

  • Chomicki J, Toman D (1995) Implementing temporal integrity constraints using an active dbms. IEEE Trans Knowl Data Eng 7(4):566–582

    Article  Google Scholar 

  • Chomicki J, Toman D (1998) Temporal logic in information systems. In: Chap 3: Logic for databases and information systems, Kluwer Academic Publisher, pp 31–70

    Google Scholar 

  • Cuppens F, Demolombe R (1996) A deontic logic for reasoning about confidentiality. In: Proceedings of 3rd international workshop on deontic logic in computer science (DEON’96)

    Google Scholar 

  • Davidson SB, Fan W, Hara CS (2007) Propagating xml constraints to relations. J Comput Syst Sci 73(3):316–361

    Article  MathSciNet  MATH  Google Scholar 

  • de Amo S, Bidoit N (1993) Contraintes dynamiques d’inclusion et schémas transactionnels. In: Neuvièmes Journées Bases de Données Avancées

    Google Scholar 

  • de Amo S, Bidoit N (1995) A first step towards implementing dynamic algebraic dependencies. In: 893 L (ed) Proceedings of 5th ICDT

    Google Scholar 

  • Demolombe R (1992) Syntactical characterization of a subset of domain independent formulas. J ACM 39

    Google Scholar 

  • Demolombe R, Jones A (1996) Integrity constraints revisited. J Interes Group Pure Appl Log 4(3)

    Google Scholar 

  • Demri S (2003) Modal logics for semistructured data. Invited talk at “Third workshop on methods for modalities (M4M-3)”

    Google Scholar 

  • Dubois D, Prade H (2004) Possibilistic logic: a retrospective and prospective view. Fuzzy Sets Syst 144(1):3–23

    Article  MathSciNet  MATH  Google Scholar 

  • Dubois D, Fargier H, Prade H (1997) Beyond min aggregation in multicriteria decision: (ordered) weighted min, discri-min, leximin. In: Yager R, Kacprzyk J (eds) The ordered weighted averaging operators—theory and applications. Kluwer Academic Publisher, pp 181–192

    Google Scholar 

  • Emerson EA (1990) Temporal and modal logic. In: van Leeuwen J (ed) In: Handbook of theoretical computer science volume B: formal models and semantics. Elsevier

    Google Scholar 

  • Fagin R (1998) Fuzzy queries in multimedia database systems. Proc of PODS 1998:1–10

    Google Scholar 

  • Fan W, Siméon J (2003) Integrity constraints for xml. J Comput Syst Sci 66(1):254–291

    Article  MathSciNet  MATH  Google Scholar 

  • Fishburn P (1999) Preference structures and their numerical representations. Theor Comput Sci 217(2):359–383

    Article  MathSciNet  MATH  Google Scholar 

  • Gabbay DM, Pnueli A, Shelah S, Stavi J (1980) On the temporal basis of fairness. In: POPL, pp 163–173

    Google Scholar 

  • Gallaire H, Minker J (1978) Logic and databases. Plenum

    Google Scholar 

  • Gallaire H, Minker J, Nicolas J (1981) Advances in database theory, vol 1. Plenum

    Google Scholar 

  • Gallaire H, Minker J, Nicolas J (1983) Advances in database theory, vol 21. Plenum

    Google Scholar 

  • Gallaire H, Minker J, Nicolas JM (1984) Logic and databases: a deductive approach. ACM Surv 16(2)

    Google Scholar 

  • Georgiadis P, Kapantaidakis I, Christophides V, Nguer E, Spyratos N (2008) Efficient rewriting algorithms for preference queries. Proc of ICDE 2008:1101–1110

    Google Scholar 

  • Goasdoué F (2001) Réécriture de requêtes en termes de vues dans carin et intégration d’informations. PhD thesis, Université Paris Sud XI - Orsay

    Google Scholar 

  • Goasdoué F, Lattes V, Rousset MC (2000) The use of carin language and algorithms for information integration: the picsel system. Int J Coop Inf Syst 9:383–401

    Article  Google Scholar 

  • Hacid MS, Rigotti C (1995) Combining resolution and classification for semantic query optimization. In: DOOD, pp 447–466

    Google Scholar 

  • Hadjali A, Kaci S, Prade H (2011) Database preference queries—a possibilistic logic approach with symbolic priorities. Ann Math Artif Intell 63(3–4):357–383

    Article  MathSciNet  MATH  Google Scholar 

  • Herr L (1997) Langages de requête pour les bases de données temporelles. PhD thesis, Université Paris-Sud 11

    Google Scholar 

  • Kamp HW (1968) Tense logic and the theory of linear order. PhD thesis, University of California, Los Angeles

    Google Scholar 

  • Kießling W (2002) Foundations of preferences in database systems. In: Proceedings of the 2002 VLDB conference, pp 311–322

    Google Scholar 

  • Kießling W, Köstler G (2002) Preference SQL—design, implementation, experiences. In: Proceedings of the 2002 VLDB conference, pp 990–1001

    Google Scholar 

  • Koutrika G, Ioannidis YE (2004) Personalization of queries based on user preferences. In: Bosi G, Brafman RI, Chomicki J, Kießling W (eds) In: Preferences, vol 04271 of Dagstuhl Seminar Proceedings. IBFI, Schloss Dagstuhl, Germany

    Google Scholar 

  • Kripke S (1963) Semantical considerations on modal logic. Acta Philos Fenn 16:83–94

    MathSciNet  MATH  Google Scholar 

  • Kuhns J (1967) Answering questions by computers—a logical study. Rand Memo RM 5428 PR, Rand Corporation, Santa Monica, California

    Google Scholar 

  • Levy A (2001) Answering queries using views: a survey. vLDB J

    Google Scholar 

  • Levy A, Rousset MC (1998) Combining horn rules and description logics in carin. Artif Intell 101

    Google Scholar 

  • Lin X, Yuan Y, Zhang Q, Zhang Y (2007) Selecting stars: the k most representative skyline operator. Proc of the ICDE 2007:86–95

    Google Scholar 

  • Maier D, Mendelzon AO, Sagiv Y (1979) Testing implications of data dependencies. ACM Trans Database Syst 4(4):455–469

    Article  Google Scholar 

  • Nicolas JM (1982) Logic for improving integrity checking in relational databases. Acta Inform 18(3)

    Google Scholar 

  • Pivert O, Bosc P (2012) Fuzzy preference queries to relational databases. Imperial College Press, London, UK

    Google Scholar 

  • Prior A (1957) Time and modality. In: John Locke lectures for 1955–56. Oxford University Press

    Google Scholar 

  • Reiter R (1983) Towards a logical reconstruction of relational database theory. In: On conceptual modelling: perspectives from artificial intelligence, databases and programming languages. Springer

    Google Scholar 

  • Reiter R (1988) What should a database know. In: Proceedings of PODS

    Google Scholar 

  • Reiter R (1993) Proving properties of states in the situation calculus. Artif Intell 64(2)

    Google Scholar 

  • Rousset MC, Bidault A, Froidevaux C, Gagliardi H, Goasdoué F, Reynaud C, Safar B (2002) Construction de médiateurs pour intégrer des sources d’informations multiples et hétérogène: le projet picsel. Inf Interact Intell 2:9–58

    Google Scholar 

  • Simmen D, Shekita E, Malkemus T (1996) Fundamental techniques for order optimization. In: Jagadish H, Mumick I (eds) Proceedings of the 1996 ACM SIGMOD international conference on management of data. Montreal, Quebec, Canada, June 4–6, 1996, ACM Press, pp 57–67

    Google Scholar 

  • Toman D (2003) On incompleteness of multi-dimensional first-order temporal logics. In: Proceedings of the 10th international symposium on temporal representation and reasoning, pp 99–106

    Google Scholar 

  • Torlone R, Ciaccia P (2002) Finding the best when it’s a matter of preference. In: Proceedings of the 10th Italian national conference on advanced data base systems (SEBD 2002), pp 347–360

    Google Scholar 

  • Ullman JD (1980) Principles of database systems. Computer Science Press

    Google Scholar 

  • Vardi M (1988) A temporal fixpoint calculus. In: Proceedings of the 5th ACM symposium on principles of programming languages, pp 250–259

    Google Scholar 

  • Wiederhold G (2002) Mediators in the architecture of future information systems. IEEE Comput

    Google Scholar 

  • Wolper P (1983) Temporal logic can be more expressive. Inf Control 56(1–2):72–99

    Article  MathSciNet  MATH  Google Scholar 

  • Zadeh L (1965) Fuzzy sets. Inf Control 8:338–353

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Bidoit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bidoit, N., Bosc, P., Cholvy, L., Pivert, O., Rousset, MC. (2020). Databases and Artificial Intelligence. In: Marquis, P., Papini, O., Prade, H. (eds) A Guided Tour of Artificial Intelligence Research. Springer, Cham. https://doi.org/10.1007/978-3-030-06170-8_3

Download citation

Publish with us

Policies and ethics