Abstract
In the era of Deep Learning and Big Data, the place of Genetic Programming (GP) within the Machine Learning area seems difficult to define. Whether it is due to technical constraints or conceptual barriers, GP is currently not a paradigm of choice for the development of state-of-the-art machine learning systems. Nonetheless, there are important features of the GP approach that make it unique and should continue to be actively explored and studied. In this work we focus on two aspects of GP that have previously received little or no attention, particularly in tree-based GP for symbolic regression. First, on the potential of GP to perform transfer learning, where solutions evolved for one problem are transferred to another. Second, on the potential of GP individuals to detect the true underlying structure of an input dataset and detect anomalies in the input data, what are known as outliers. This work presents initial results on both issues, with the goal of fostering discussion and showing that there is still untapped potential in the GP paradigm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Experimental evidence more or less confirmed the No-Free-Lunch theorem in many domains where, on average, many algorithms tended to perform similarly.
References
Castelli, M., Trujillo, L., Vanneschi, L., Popovi, A.: Prediction of energy performance of residential buildings: A genetic programming approach. Energy and Buildings 102, 67–74 (2015)
Chen, X., Ong, Y.S., Lim, M.H., Tan, K.C.: A multi-facet survey on memetic computation. IEEE Transactions on Evolutionary Computation 15(5), 591–607 (2011)
Chitty, D.M.: Faster GPU based genetic programming using A two dimensional stack. CoRR abs/1601.00221 (2016)
Dozal, L., Olague, G., Clemente, E., Hernández, D.E.: Brain programming for the evolution of an artificial dorsal stream. Cognitive Computation 6(3), 528–557 (2014)
Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM 24(6), 381–395 (1981)
Floreano, D., Mattiussi, C.: Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies. MIT Press (2008)
Fortin, F.A., et al.: DEAP: Evolutionary algorithms made easy. Journal of Machine Learning Research 13, 2171–2175 (2012)
Friedman, J.H.: Multivariate adaptive regression splines. Ann. Statist. 19(1), 1–67 (1991)
Galván-López, E., Vazquez-Mendoza, L., Schoenauer, M., Trujillo, L.: On the Use of Dynamic GP Fitness Cases in Static and Dynamic Optimisation Problems. In: EA 2017- International Conference on Artificial Evolution, pp. 1–14. Paris, France (2017)
Gonçalves, I., Silva, S.: Balancing learning and overfitting in genetic programming with interleaved sampling of training data. In: K. Krawiec, et al. (eds.) Genetic Programming, LNCS, vol. 7831, pp. 73–84. Springer Berlin Heidelberg (2013)
Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016)
Hubert, M., Rousseeuw, P.J., Van Aelst, S.: High-breakdown robust multivariate methods. Statist. Sci. 23 (2008)
Kotanchek, M., et al.: Pursuing the Pareto Paradigm: Tournaments, Algorithm Variations and Ordinal Optimization, pp. 167–185. Springer US (2007)
López, U., Trujillo, L., Martinez, Y., Legrand, P., Naredo, E., Silva, S.: RANSAC-GP: Dealing with Outliers in Symbolic Regression with Genetic Programming, pp. 114–130. Springer International Publishing, Cham (2017)
Martínez, Y., Trujillo, L., Legrand, P., Galván-López, E.: Prediction of expected performance for a genetic programming classifier. Genetic Programming and Evolvable Machines 17(4), 409–449 (2016)
McConaghy, T.: Genetic Programming Theory and Practice IX, chap. FFX: Fast, Scalable, Deterministic Symbolic Regression Technology, pp. 235–260. Springer New York, New York, NY (2011)
Miranda, L.F., Oliveira, L.O.V.B., Martins, J.F.B.S., Pappa, G.L.: How noisy data affects geometric semantic genetic programming. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’17, pp. 985–992. ACM, New York, NY, USA (2017)
Moraglio, A., Krawiec, K., Johnson, C.G.: Parallel Problem Solving from Nature - PPSN XII: 12th International Conference, Taormina, Italy, September 1–5, 2012, Proceedings, Part I, chap. Geometric Semantic Genetic Programming, pp. 21–31. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)
Muñoz, L., Silva, S., Trujillo, L.: M3GP: multiclass classification with GP. In: P. Machado, et al. (eds.) 18th European Conference on Genetic Programming, LNCS, vol. 9025, pp. 78–91. Springer, Copenhagen (2015)
Muñoz, L., Trujillo, L., Silva, S., Vanneschi, L.: Evolving multidimensional transformations for symbolic regression with m3gp. Memetic Computing (2018). https://doi.org/10.1007/s12293-018-0274-5
Nguyen, T.T., Yang, S., Branke, J.: Evolutionary dynamic optimization: A survey of the state of the art. Swarm and Evolutionary Computation 6, 1–24 (2012)
Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. on Knowl. and Data Eng. 22(10), 1345–1359 (2010)
Qiu, J., Wu, Q., Ding, G., Xu, Y., Feng, S.: A survey of machine learning for big data processing. EURASIP Journal on Advances in Signal Processing 2016 (1), 67 (2016)
Roberts, S.C., Howard, D., Koza, J.R.: Evolving modules in genetic programming by subtree encapsulation. In: Proceedings of the 4th European Conference on Genetic Programming, EuroGP ’01, pp. 160–175. Springer-Verlag, Berlin, Heidelberg (2001)
Spector, L.: Assessment of problem modality by differential performance of lexicase selection in genetic programming: a preliminary report. In: Proceedings of the fourteenth international conference on Genetic and evolutionary computation conference companion, GECCO Companion ’12, pp. 401–408. ACM (2012)
Tran, C.T., Zhang, M., Andreae, P., Xue, B.: Genetic programming based feature construction for classification with incomplete data. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’17, pp. 1033–1040. ACM, New York, NY, USA (2017)
Trujillo, L., Muñoz, L., Galván-López, E., Silva, S.: Neat genetic programming. Inf. Sci. 333, 21–43 (2016)
Tsanas, A., Xifara, A.: Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools. Energy and buildings 49, 560–567 (2012)
Vladislavleva, E.J., Smits, G.F., den Hertog, D.: Order of nonlinearity as a complexity measure for models generated by symbolic regression via pareto genetic programming. IEEE Transactions on Evolutionary Computation 13(2), 333–349 (2009)
Acknowledgements
This research was funded by CONACYT (Mexico) Fronteras de la Ciencia 2015-2 Project No. FC-2015-2/944 and TecNM project no. 6826-18-P, and first and third authors were respectively supported by CONACYT graduate scholarship No. 302526 and No. 573397.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Trujillo, L., Muñoz, L., López, U., Hernández, D.E. (2019). Untapped Potential of Genetic Programming: Transfer Learning and Outlier Removal. In: Banzhaf, W., Spector, L., Sheneman, L. (eds) Genetic Programming Theory and Practice XVI. Genetic and Evolutionary Computation. Springer, Cham. https://doi.org/10.1007/978-3-030-04735-1_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-04735-1_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-04734-4
Online ISBN: 978-3-030-04735-1
eBook Packages: Computer ScienceComputer Science (R0)