Abstract
The latency, bandwidth, and power consumption of on-chip interconnection networks are central concerns in the design of multi- and many-core microprocessors. When the global network-on-chip (NoC) is electrical, the power consumption and the limited connectivity caused by difficulties associated with global wires will limit network performance due to power or topology constraints unless applications can be written, which only require nearest neighbor communication. This is a highly unlikely scenario, and these performance and power barriers will become more severe with shrinking process technology and increased core counts. Emerging CMOS nanophotonic technologies provide a compelling alternative to traditional all-electronic NoCs. Wire power consumption is fundamentally linear with wire length. Due to the low loss nature of waveguides, optical data transmission primarily consumes energy at the endpoints where optical to electrical (OE) and electrical to optical (EO) conversion takes place. Therefore, the energy required to transport data is relatively independent of path length for path lengths of interest for NoC-based systems. Additionally, the use of wave division multiplexing can be exploited to improve per lane bandwidth. Signal integrity limitations make this option intractable for electrical NoCs. The result is that nanophotonic NoCs can provide both higher throughput and lower power consumption than all-electrical NoCs. This chapter introduces CMOS nanophotonic technology and considers its use in photonic chip-wide networks enabling many-core microprocessors with greatly enhanced performance and flexibility while consuming less power than their electrical counterparts. It provides, as a case study, a design that takes advantage of CMOS nanophotonics to achieve ten-teraop performance in a 256-core 3D chip stack, using optically connected main memory, very high memory bandwidth, cache coherence across all cores, no bisection bandwidth limits on communication, and cross-chip communication at very low latency with cache-line granularity.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Proceedings of the ISSCC Workshop F2: Design of 3D-Chipstacks. IEEE (2007). Organizers: W. Weber and W. Bowhill
Ahn, J., Fiorentino, M., Beausoleil, R., Binkert, N., Davis, A., Fattal, D., Jouppi, N., McLaren, M., Santori, C., Schreiber, R., Spillane, S., Vantrease, D., Xu, Q.: Devices and architectures for photonic chip-scale integration. Applied Physics A: Materials Science and Processing 95(4), 989–997 (2009)
Analui, B., Guckenberger, D., Kucharski, D., Narasimha, A.: A fully integrated 20-gb/s optoelectronic transceiver implemented in a standard 0.13 μm cmos soi technology. IEEE Journal of Solid-State Circuits 41(12), 2945–2955 (2006)
ANSI/IEEE: Local Area Networks: Token Ring Access Method and Physical Layer Specifications, Std 802.5. Tech. rep. (1989)
Asanovic, K., Bodik, R., Catanzaro, B.C., Gebis, J.J., Husbands, P., Keutzer, K., Patterson, D.A., Plishker, W.L., Shalf, J., Williams, S.W., Yelick, K.A.: The Landscape of Parallel Computing Research: A View from Berkeley. Tech. Rep. UCB/EECS-2006-183, EECS Department, University of California, Berkeley (2006)
Banerjee, K., Mehrotra, A.: A power-optimal repeater insertion methodology for global interconnects in nanometer designs. IEEE Transactions on Electron Devices 49(11), 2001–2007 (2002)
Batten, C., Joshi, A., Orcutt, J., Khilo, A., Moss, B., Holzwarth, C., Popvic, M., Li, H., Smitth, H., Hoyt, J., Kartner, F., Ram, R., Stojanovic, V., Asanovic, K.: Building manycore processor-to-DRAM networks with monolithic silicon photonics. In: Hot Interconnects (2008)
Binkert, N., Davis, A., Lipasti, M., Schreiber, R., Vantrease, D.: Nanophotonic Barriers. In: Workshop on Photonic Interconnects and Computer Architecture (2009)
Binkert, N.L., Dreslinski, R.G., Hsu, L.R., Lim, K.T., Saidi, A.G., Reinhardt, S.K.: The M5 simulator: Modeling networked systems. IEEE Micro 26(4), 52–60 (2006)
Black, B., et al: Die Stacking 3D Microarchitecture. In: Proceedings of MICRO-39. IEEE (2006)
Bogineni, K., Sivalingam, K.M., Dowd, P.W.: Low-complexity multiple access protocols for wavelength-division multiplexed photonic networks. IEEE Journal on Selected Areas in Communications 11, 590–604 (1993)
Chaudhry, S., Caprioli, P., Yip, S., Tremblay, M.: High-performance throughput computing. IEEE Micro 25(3), 0272–1732 (2005)
Chen, L., Preston, K., Manipatruni, S., Lipson, M.: Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors. Optical Express 17, 15248–15256 (2009)
Dally, W., Seitz, C.: Deadlock-free message routing in multiprocessor interconnection networks. IEEE Transactions on Computers C-36(5), 547–553 (1987)
Davis, W.R., Wilson, J., Mick, S., Xu, J., Hua, H., Mineo, C., Sule, A., Steer, M., Franzon, P.: Demystifying 3D ICS: The pros and cons of going vertical. IEEE Design and Test of Computers 22(1), 498–510 (2005)
Falcon, A., Faraboschi, P., Ortega, D.: Combining Simulation and Virtualization through Dynamic Sampling. In: ISPASS (2007)
Fischer, U., Zinke, T., Kropp, J.R., Arndt, F., Petermann, K.: 0.1 db/cm waveguide losses in single-mode soi rib waveguides. IEEE Photonics Technology Letters 8(5), 647–648 (1996)
Green, W.M., Rooks, M.J., Sekaric, L., Vlasov, Y.A.: Ultra-compact, low rf power, 10 gb/s siliconmach-zehnder modulator. Optical Express 15(25), 17106–17113 (2007)
Gubenko, A., Krestnikov, I., Livshtis, D., Mikhrin, S., Kovsh, A., West, L., Bornholdt, C., Grote, N., Zhukov, A.: Error-free 10 gbit/s transmission using individual fabry-perot modes of low-noise quantum-dot laser. Electronics Letters 43(25), 1430–1431 (2007)
Ho, R., Mai, K., Horowitz, M.: The Future of Wires. Proceedings of the IEEE, Vol. 89, No. 4 (2001)
Intel: Intel Atom Processor. http://www.intel.com/techno-logy/atom
Intel: Introducing the 45nm Next Generation Intel Core Microarchitecture. http://www.intel.com/technology/magazine/45nm/coremicroarchitecture-0507.htm
Kirman, N., Kirman, M., Dokania, R.K., Martinez, J.F., Apsel, A.B., Watkins, M.A., Albonesi, D.H.: Leveraging Optical Technology in Future Bus-based Chip Multiprocessors. In: MICRO’06, pp. 492–503. IEEE Computer Society, Washington, DC, USA (2006)
Koch, B.R., Fang, A.W., Cohen, O., Bowers, J.E.: Mode-locked silicon evanescent lasers. Optics Express 15(18), 11225 (2007)
Kodi, A., Louri, A.: Performance adaptive power-aware reconfigurable optical interconnects for high-performance computing (hpc) systems. In: SC ’07: Proceedings of the 2007 ACM/IEEE conference on Supercomputing, pp. 1–12. ACM, NY, USA (2007)
Kovsh, A., Krestnikov, I., Livshits, D., Mikhrin, S., Weimert, J., Zhukov, A.: Quantum dot laser with 75nm broad spectrum of emission. Optics Letters 32(7), 793–795 (2007)
Krishnamurthy, P., Franklin, M., Chamberlain, R.: Dynamic reconfiguration of an optical interconnect. In: ANSS ’03, p. 89. IEEE Computer Society, Washington, DC, USA (2003)
Kumar, R., Zyuban, V., Tullsen, D.M.: Interconnections in Multi-Core Architectures: Understanding Mechanisms, Overheads and Scaling. In: ISCA-32, pp. 408–419. IEEE Computer Society, Washington, DC, USA (2005)
Lipson, M.: Guiding, modulating, and emitting light on silicon–challenges and opportunities. Journal of Lightwave Technology 23(12), 4222–4238 (2005)
Marsan, M.A., Bianco, A., Leonardi, E., Morabito, A., Neri, F.: All-optical WDM multi-rings with differentiated QoS. IEEE Communications Magazine 37(2), 58–66 (1999)
Miller, D.: Device requirements for optical interconnects to silicon chips. Proceedings of the IEEE 97(7), 1166–1185 (2009)
Muralimanohar, N.: Interconnect Aware Cache Architectures. Ph.D. thesis, University of University (2009)
Muralimanohar, N., Balasubramonian, R., Jouppi, N.: Optimizing NUCA Organizations and Wiring Alternatives for Large Caches with CACTI 6.0. In: Proceedings of the 40th International Symposium on Microarchitecture (MICRO-40) (2007)
Nagarajan, R., et al: Large-scale photonic integrated circuits for long-haul transmission and switching. Journal of Optical Networking 6(2), 102–111 (2007)
Nawrocka, M., Tao Liu, Xuan Wang, Panepucci, R.: Tunable silicon microring resonator with wide free spectral range. Applied Physics Letters 89(7), 071110 (2006)
Owens, J., Dally, W., Ho, R., Jayasimha, D., Keckler, S., Peh, L.S.: Research challenges for on-chip interconnection networks. IEEE Micro 27(5), 96–108 (2007)
Palmer, R., Poulton, J., Dally, W.J., Eyles, J., Fuller, A.M., Greer, T., Horowitz, M., Kellam, M., Quan, F., Zarkeshvarl, F.: A 14mW 6.25Gb/s Transceiver in 90nm CMOS for Serial Chip-to-Chip Communications. In: ISSCC (2007)
Pan, Y., Kumar, P., Kim, J., Memik, G., Zhang, Y., Choudhary, A.: Firefly: illuminating future network-on-chip with nanophotonics. In: ISCA ’09, pp. 429–440. ACM, NY, USA (2009)
Pierce, J.: How far can data loops go? IEEE Transactions on Communications 20(3), 527–530 (1972)
Razavi, B.: Design of Integrated Circuits for Optical Communications. McGraw-Hill, NY (2003)
Roelkens, G., Vermeulen, D., Thourhout, D.V., Baets, R., Brision, S., Lyan, P., Gautier, P., Fédéli, J.M.: High efficiency diffractive grating couplers for interfacing a single mode optical fiber with a nanophotonic silicon-on-insulator waveguide circuit. Applied Physics Letters 92(13), 131101 (2008)
Semiconductor Industries Association: International Technology Roadmap for Semiconductors. http://www.itrs.net/ (2006 Update)
Shijun Xiao, Khan, M., Hao Shen, Minghao Qi: A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion. Optics Express 15(22), 14,765–71 (2007)
Thoziyoor, S., Muralimanohar, N., Ahn, J., Jouppi, N.P.: CACTI 5.1. Tech. Rep. HPL-2008-20, HP Labs
Trotter, M.R.W.D.C., Young, R.W.: Maximally Confined High-Speed Second-Order Silicon Microdisk Switches. In: OSA Technical Digest (2008)
Vantrease, D., Schreiber, R., Monchiero, M., McLaren, M., Jouppi, N.P., Fiorentino, M., Davis, A., Binkert, N., Beausoleil, R.G., Ahn, J.: Corona: System Implications of Emerging Nanophotonic Technology. In: ISCA-35, pp. 153–164 (2008)
Vantrease, D., Binkert, N., Schreiber, R., Lipasti, M.H.: Light speed arbitration and flow control for nanophotonic interconnects. In: Micro-42: Proceedings of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture, pp. 304–315. ACM, NY, USA (2009)
Woo, S.C., Ohara, M., Torrie, E., Singh, J.P., Gupta, A.: The SPLASH-2 Programs: Characterization and Methodological Considerations. In: ISCA, pp. 24–36 (1995)
Xu, Q., Schmidt, B., Pradhan, S., Lipson, M.: Micrometre-scale silicon electro-optic modulator. Nature 435(7040), 325–327 (2005)
Xu, Q., Schmidt, B., Shakya, J., Lipson, M.: Cascaded silicon micro-ring modulators for wdm optical interconnection. Optical Express 14(20), 9431–9435 (2006)
Xu, Q., Fattal, D., Beausoleil, R.G.: Silicon microring resonators with 1.5 μm radius. Optical Express 16(6), 4309–4315 (2008)
Xue, J., et al: An Intra-Chip Free-Space Optical Interconnect. In: CMP-MSI: 3rd Workshop on Chip Multiprocessor Memory Systems and Interconnects (2008)
Yu-Hsuan Kuo, Yong Kyu Lee, Yangsi Ge, Shen Ren, Roth, J., Kamins, T., Miller, D., Harris, J.: Strong quantum-confined Stark effect in germanium quantum-well structures on silicon. Nature 437(7063), 1334–6 (2005)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer Science+Business Media, LLC
About this chapter
Cite this chapter
Ahn, J.H. et al. (2011). CMOS Nanophotonics: Technology, System Implications, and a CMP Case Study. In: Silvano, C., Lajolo, M., Palermo, G. (eds) Low Power Networks-on-Chip. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-6911-8_9
Download citation
DOI: https://doi.org/10.1007/978-1-4419-6911-8_9
Published:
Publisher Name: Springer, Boston, MA
Print ISBN: 978-1-4419-6910-1
Online ISBN: 978-1-4419-6911-8
eBook Packages: EngineeringEngineering (R0)