[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

The Ultimate Strategy to Search on m Rays?

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1449))

Included in the following conference series:

  • 375 Accesses

Abstract

We consider the problem of searching on m current rays for a target of unknown location. If no upper bound on the distance to the target is known in advance, then the optimal competitive ratio is 1 + 2mm/(m − 1)m−1. We show that if an upper bound of D on the distance to the target is known in advance, then the competitive ratio of any searchst rategy is at least 1 + 2mm/(m − 1)m−1O(1/log2D) which is also optimal—but in a stricter sense.

We also construct a search strategy that achieves this ratio. Astonishingly, our strategy works equally well for the unbounded case, that is, if the target is found at distance D from the starting point, then the competitive ratio is 1 + 2mm/(m − 1)m−1O(1/log2D) and it is not necessary for our strategy to know an upper bound on D in advance.

This research is supported by the DFG-Project “Diskrete Probleme”, No. Ot 64/8-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R. Baeza-Yates, J. Culberson, and G. Rawlins. Searching in the plane. Information and Computation, 106:234–252, 1993.

    Article  MathSciNet  Google Scholar 

  2. A. Datta, Ch. Hipke, and S. Schuierer. Competitive searching in polygons—beyond generalized streets. In Proc. Sixth Annual International Symposium on Algorithms and Computation, pages 32–41. LNCS 1004, 1995.

    Chapter  Google Scholar 

  3. A. Datta and Ch. Icking. Competitive searching in a generalized street. In Proc. 10th Annu. ACM Sympos. Comput. Geom., pages 175–182, 1994.

    Google Scholar 

  4. S. Gal. Search Games. Academic Press, 1980.

    Google Scholar 

  5. Ch. Hipke. Online-Algorithmen zur kompetitiven Suche in einfachen Polygonen. Master’s thesis, Universität Freiburg, 1994.

    Google Scholar 

  6. Ch. Icking and R. Klein. Searching for the kernel of a polygon: A competitive strategy. In Proc. 11th Annu. ACM Sympos. Comput. Geom., pages 258–266, 1995.

    Google Scholar 

  7. Ch. Icking, R. Klein, and E. Langetepe. How to find a point on a line within a fixed distance. Informatik-Bericht 220, Fernuni Hagen, November 1997.

    Google Scholar 

  8. M.-Y. Kao, Y. Ma, M. Sipser, and Y. Yin. Optimal constructions of hybrid algorithms. In Proc. 5th ACM-SIAM Sympos. Discrete Algorithms, pages 372–381, 1994.

    Google Scholar 

  9. M.-Y. Kao, J. H. Reif, and S. R. Tate. Searching in an unknown environment: An optimal randomized algorithm for the cow-path problem. In Proc. 4th ACM-SIAM Sympos. Discrete Algorithms, pages 441–447, 1993.

    Google Scholar 

  10. R. Klein. Walking an unknown street withb ounded detour. Comput. Geom. Theory Appl., 1:325–351, 1992.

    Article  Google Scholar 

  11. R. Klein. Algorithmische Geometrie. Addison-Wesley, 1997.

    Google Scholar 

  12. E. Koutsoupias, Ch. Papadimitriou, and M. Yannakakis. Searching a fixed graph. In Proc. 23rd Intern. Colloq. on Automata, Languages and Programming, pages 280–289. LNCS 1099, 1996.

    Chapter  Google Scholar 

  13. A. López-Ortiz. On-line Searching on Bounded and Unbounded Domains. Ph D thesis, Department of Computer Science, University of Waterloo, 1996.

    Google Scholar 

  14. A. López-Ortiz and S. Schuierer. Going home through an unknown street. In S. G. Akl, F. Dehne, and J.-R. Sack, editors, Proc. 4th Workshop on Algorithms and Data Structures, pages 135–146. LNCS 955, 1995.

    Chapter  Google Scholar 

  15. A. López-Ortiz and S. Schuierer. Generalized streets revisited. In M. Serna, J. Diaz, editor, Proc. 4th European Symposium on Algorithms, pages 546–558. LNCS 1136, 1996.

    Google Scholar 

  16. A. López-Ortiz and S. Schuierer. Position-independent near optimal searching and on-line recognition in star polygons. In Proc. 4th Workshop on Algorithms and Data Structures, pages 284–296. LNCS 1272, 1997.

    Chapter  Google Scholar 

  17. C. H. Papadimitriou and M. Yannakakis. Shortest paths without a map. In Proc. 16th Internat. Colloq. Automata Lang. Program., pages 610–620. LNCS 372, 1989.

    Google Scholar 

  18. D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging rules. Communications of the ACM, 28:202–208, 1985.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

López-Ortiz, A., Schuierer, S. (1998). The Ultimate Strategy to Search on m Rays?. In: Hsu, WL., Kao, MY. (eds) Computing and Combinatorics. COCOON 1998. Lecture Notes in Computer Science, vol 1449. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-68535-9_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-68535-9_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64824-6

  • Online ISBN: 978-3-540-68535-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics