Abstract
We consider the problem of searching on m current rays for a target of unknown location. If no upper bound on the distance to the target is known in advance, then the optimal competitive ratio is 1 + 2mm/(m − 1)m−1. We show that if an upper bound of D on the distance to the target is known in advance, then the competitive ratio of any searchst rategy is at least 1 + 2mm/(m − 1)m−1 − O(1/log2D) which is also optimal—but in a stricter sense.
We also construct a search strategy that achieves this ratio. Astonishingly, our strategy works equally well for the unbounded case, that is, if the target is found at distance D from the starting point, then the competitive ratio is 1 + 2mm/(m − 1)m−1 − O(1/log2D) and it is not necessary for our strategy to know an upper bound on D in advance.
This research is supported by the DFG-Project “Diskrete Probleme”, No. Ot 64/8-1.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
R. Baeza-Yates, J. Culberson, and G. Rawlins. Searching in the plane. Information and Computation, 106:234–252, 1993.
A. Datta, Ch. Hipke, and S. Schuierer. Competitive searching in polygons—beyond generalized streets. In Proc. Sixth Annual International Symposium on Algorithms and Computation, pages 32–41. LNCS 1004, 1995.
A. Datta and Ch. Icking. Competitive searching in a generalized street. In Proc. 10th Annu. ACM Sympos. Comput. Geom., pages 175–182, 1994.
S. Gal. Search Games. Academic Press, 1980.
Ch. Hipke. Online-Algorithmen zur kompetitiven Suche in einfachen Polygonen. Master’s thesis, Universität Freiburg, 1994.
Ch. Icking and R. Klein. Searching for the kernel of a polygon: A competitive strategy. In Proc. 11th Annu. ACM Sympos. Comput. Geom., pages 258–266, 1995.
Ch. Icking, R. Klein, and E. Langetepe. How to find a point on a line within a fixed distance. Informatik-Bericht 220, Fernuni Hagen, November 1997.
M.-Y. Kao, Y. Ma, M. Sipser, and Y. Yin. Optimal constructions of hybrid algorithms. In Proc. 5th ACM-SIAM Sympos. Discrete Algorithms, pages 372–381, 1994.
M.-Y. Kao, J. H. Reif, and S. R. Tate. Searching in an unknown environment: An optimal randomized algorithm for the cow-path problem. In Proc. 4th ACM-SIAM Sympos. Discrete Algorithms, pages 441–447, 1993.
R. Klein. Walking an unknown street withb ounded detour. Comput. Geom. Theory Appl., 1:325–351, 1992.
R. Klein. Algorithmische Geometrie. Addison-Wesley, 1997.
E. Koutsoupias, Ch. Papadimitriou, and M. Yannakakis. Searching a fixed graph. In Proc. 23rd Intern. Colloq. on Automata, Languages and Programming, pages 280–289. LNCS 1099, 1996.
A. López-Ortiz. On-line Searching on Bounded and Unbounded Domains. Ph D thesis, Department of Computer Science, University of Waterloo, 1996.
A. López-Ortiz and S. Schuierer. Going home through an unknown street. In S. G. Akl, F. Dehne, and J.-R. Sack, editors, Proc. 4th Workshop on Algorithms and Data Structures, pages 135–146. LNCS 955, 1995.
A. López-Ortiz and S. Schuierer. Generalized streets revisited. In M. Serna, J. Diaz, editor, Proc. 4th European Symposium on Algorithms, pages 546–558. LNCS 1136, 1996.
A. López-Ortiz and S. Schuierer. Position-independent near optimal searching and on-line recognition in star polygons. In Proc. 4th Workshop on Algorithms and Data Structures, pages 284–296. LNCS 1272, 1997.
C. H. Papadimitriou and M. Yannakakis. Shortest paths without a map. In Proc. 16th Internat. Colloq. Automata Lang. Program., pages 610–620. LNCS 372, 1989.
D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging rules. Communications of the ACM, 28:202–208, 1985.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1998 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
López-Ortiz, A., Schuierer, S. (1998). The Ultimate Strategy to Search on m Rays?. In: Hsu, WL., Kao, MY. (eds) Computing and Combinatorics. COCOON 1998. Lecture Notes in Computer Science, vol 1449. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-68535-9_11
Download citation
DOI: https://doi.org/10.1007/3-540-68535-9_11
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-64824-6
Online ISBN: 978-3-540-68535-7
eBook Packages: Springer Book Archive