Abstract
We present a parallel computational method for the QR decomposition with column pivoting of a sparse matrix by means of Modified Gram-Schmidt orthogonalization. Nonzero elements of the matrix M to be decomposed are stored in a one-dimensional doubly linked list data structure. We discuse a strategy to reduce fill-in in order to get memory savings and decrease the computation times. As an application of QR decomposition, we describe the least squares problem. This algorithm was designed for a message passing multiprocessor and has been evaluated on a Cray T3D, using the Harwell-Boeing sparse matrix collection.
This work was supported by the Spanish CICYT under contract TIC92-0942-C03 and by the TRACS Programme under the Human Capital and Mobility Programme of the European Union (grant number ERB-CHGE-CT92-0005)
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Golub, G.H., Van Loan, C.F.: Matrix Computations. The Johns Hopkins University Press, second edition (1989)
Bischof, C.H.: Adaptive Blocking in the QR Factorization. The Journal of Supercomputing, 3 (1989) 193–208
Zapata, E.L., Lamas, J.A., Rivera, F.F., Plata, O.G.: Modified Gram-Schmidt QR Factorization on Hypercube SIMD Computers. Journal of Parallel and Distributed Computing, 12 (1991) 60–69
Waring, L.C., Clint, M.: Parallel Gram-Schmidt Orthogonalisation on a Network of Transputers. Parallel Computing, 17 (1991) 1043–1050
Hendrickson, B.: Parallel QR Factorization Using the Torus-Wrap Mapping. Parallel Computing, 19 (1993) 1259–1271
Bendtsen, C., Hansen, P.C., Madsen, K., Nielsen, H.B., Pinar, M.: Implementation of QR Up and Downdating on a Massively Parallel Computer. Parallel Computing, 21 (1995) 49–61
Kratzer, S.G.: Sparse QR Factorization on a Massively Parallel Computer. The Journal of Supercomputing, 6 (1992) 237–255
Doallo, R., Touriño, J., Zapata, E.L.: Sparse Householder QR Factorization on a Mesh. In Fourth Euromicro Workshop on Parallel and Distributed Processing, Braga (Portugal), IEEE Computer Society Press (January 1996) 33–39
Touriño, J., Doallo, R., Zapata, E.L.: Sparse Givens QR Factorization on a Multiprocessor. In MPCS'96 (submitted)
Hare, D.R., Johnson, C.R., Olesky, D.D., Van Den Driessche, P.: Sparsity Analysis of the QR Factorization. SIAM J. Matrix Anal. Appl., 14(3) (July 1993) 655–669
Duff, I.S., Erisman, A.M., Reid, J.K.: Direct Methods for Sparse Matrices. Clarendon Press (1986)
Duff, I.S., Grimes, R.G., Lewis, J.G.: User's Guide for the Harwell-Boeing Sparse Matrix Collection. Technical Report TR-PA-92-96, CERFACS (October 1992)
Romero, L.F., Zapata, E.L.: Data Distributions for Sparse Matrix Vector Multiplication. Parallel Computing, 21(4) (1995) 583–605
Asenjo, R., Zapata, E.L.: Sparse LU Factorization on the Cray T3D. In Int'l Conference on High-Performance Computing and Networking, Milan (Italy), Springer-Verlag LNCS no.919 (May 1995) 690–696
Cray Research, Inc: Cray T3D. Technical Summary, (September 1993)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1996 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Doallo, R., Fraguela, B.B., Touriño, J., Zapata, E.L. (1996). Parallel sparse modified Gram-Schmidt QR decomposition. In: Liddell, H., Colbrook, A., Hertzberger, B., Sloot, P. (eds) High-Performance Computing and Networking. HPCN-Europe 1996. Lecture Notes in Computer Science, vol 1067. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61142-8_609
Download citation
DOI: https://doi.org/10.1007/3-540-61142-8_609
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-61142-4
Online ISBN: 978-3-540-49955-8
eBook Packages: Springer Book Archive