[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Parallel sparse modified Gram-Schmidt QR decomposition

  • Conference paper
  • First Online:
High-Performance Computing and Networking (HPCN-Europe 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1067))

Included in the following conference series:

Abstract

We present a parallel computational method for the QR decomposition with column pivoting of a sparse matrix by means of Modified Gram-Schmidt orthogonalization. Nonzero elements of the matrix M to be decomposed are stored in a one-dimensional doubly linked list data structure. We discuse a strategy to reduce fill-in in order to get memory savings and decrease the computation times. As an application of QR decomposition, we describe the least squares problem. This algorithm was designed for a message passing multiprocessor and has been evaluated on a Cray T3D, using the Harwell-Boeing sparse matrix collection.

This work was supported by the Spanish CICYT under contract TIC92-0942-C03 and by the TRACS Programme under the Human Capital and Mobility Programme of the European Union (grant number ERB-CHGE-CT92-0005)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Golub, G.H., Van Loan, C.F.: Matrix Computations. The Johns Hopkins University Press, second edition (1989)

    Google Scholar 

  2. Bischof, C.H.: Adaptive Blocking in the QR Factorization. The Journal of Supercomputing, 3 (1989) 193–208

    Google Scholar 

  3. Zapata, E.L., Lamas, J.A., Rivera, F.F., Plata, O.G.: Modified Gram-Schmidt QR Factorization on Hypercube SIMD Computers. Journal of Parallel and Distributed Computing, 12 (1991) 60–69

    Google Scholar 

  4. Waring, L.C., Clint, M.: Parallel Gram-Schmidt Orthogonalisation on a Network of Transputers. Parallel Computing, 17 (1991) 1043–1050

    Google Scholar 

  5. Hendrickson, B.: Parallel QR Factorization Using the Torus-Wrap Mapping. Parallel Computing, 19 (1993) 1259–1271

    Google Scholar 

  6. Bendtsen, C., Hansen, P.C., Madsen, K., Nielsen, H.B., Pinar, M.: Implementation of QR Up and Downdating on a Massively Parallel Computer. Parallel Computing, 21 (1995) 49–61

    Google Scholar 

  7. Kratzer, S.G.: Sparse QR Factorization on a Massively Parallel Computer. The Journal of Supercomputing, 6 (1992) 237–255

    Google Scholar 

  8. Doallo, R., Touriño, J., Zapata, E.L.: Sparse Householder QR Factorization on a Mesh. In Fourth Euromicro Workshop on Parallel and Distributed Processing, Braga (Portugal), IEEE Computer Society Press (January 1996) 33–39

    Google Scholar 

  9. Touriño, J., Doallo, R., Zapata, E.L.: Sparse Givens QR Factorization on a Multiprocessor. In MPCS'96 (submitted)

    Google Scholar 

  10. Hare, D.R., Johnson, C.R., Olesky, D.D., Van Den Driessche, P.: Sparsity Analysis of the QR Factorization. SIAM J. Matrix Anal. Appl., 14(3) (July 1993) 655–669

    Google Scholar 

  11. Duff, I.S., Erisman, A.M., Reid, J.K.: Direct Methods for Sparse Matrices. Clarendon Press (1986)

    Google Scholar 

  12. Duff, I.S., Grimes, R.G., Lewis, J.G.: User's Guide for the Harwell-Boeing Sparse Matrix Collection. Technical Report TR-PA-92-96, CERFACS (October 1992)

    Google Scholar 

  13. Romero, L.F., Zapata, E.L.: Data Distributions for Sparse Matrix Vector Multiplication. Parallel Computing, 21(4) (1995) 583–605

    Google Scholar 

  14. Asenjo, R., Zapata, E.L.: Sparse LU Factorization on the Cray T3D. In Int'l Conference on High-Performance Computing and Networking, Milan (Italy), Springer-Verlag LNCS no.919 (May 1995) 690–696

    Google Scholar 

  15. Cray Research, Inc: Cray T3D. Technical Summary, (September 1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Heather Liddell Adrian Colbrook Bob Hertzberger Peter Sloot

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Doallo, R., Fraguela, B.B., Touriño, J., Zapata, E.L. (1996). Parallel sparse modified Gram-Schmidt QR decomposition. In: Liddell, H., Colbrook, A., Hertzberger, B., Sloot, P. (eds) High-Performance Computing and Networking. HPCN-Europe 1996. Lecture Notes in Computer Science, vol 1067. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61142-8_609

Download citation

  • DOI: https://doi.org/10.1007/3-540-61142-8_609

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61142-4

  • Online ISBN: 978-3-540-49955-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics