[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A comparative study of algorithms for computing continued fractions of algebraic numbers

  • Conference paper
  • First Online:
Algorithmic Number Theory (ANTS 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1122))

Included in the following conference series:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Richard P. Brent and Edwin M. McMillan, ‘Some new algorithms for high-precision computation of Euler's constant', Math. Comp. 34 (1980), 305–312.

    Google Scholar 

  2. Enrico Bombieri and Alfred J. van der Poorten, ‘Continued fractions of algebraic numbers', in Computational Algebra and Number Theory, Sydney 1992, Wieb Bosma and Alf van der Poorten eds., (Kluwer, 1995), 137–152.

    Google Scholar 

  3. David G. Cantor, Paul G. Galyean and Horst G. Zimmer, ‘A continued fraction algorithm for real algebraic numbers', Math. Comp. 26 (1972), 785–791.

    Google Scholar 

  4. A. Khintchine, ‘Metrische Kettenbruchprobleme', Compositio Math. 1 (1935), 361–382.

    Google Scholar 

  5. Donald E. Knuth, The Art of Computer Programming, Volume 2, Seminumerical Algorithms, (Reading, Mass.: Addison-Wesley, Second Edition, 1981).

    Google Scholar 

  6. Serge Lang and Hale Trotter, ‘Continued fractions for some algebraic numbers', J. reine angew. Math., 255 (1972), 112–134.

    Google Scholar 

  7. D. H. Lehmer, ‘Euclid's algorithm for large numbers', Amer. Math. Monthly, 45 (1983), 227–233.

    Google Scholar 

  8. P. Lévy, ‘Sur le développement en fraction continue d'un nombre choisi au hasard', Compositio Math. 3 (1936), 286–303.

    Google Scholar 

  9. Gustav Lochs, ‘Die ersten 968 Kettenbruchnenner von π', Monatsh. Math., 67 (1963), 311–316.

    Google Scholar 

  10. Gustav Lochs, ‘Vergleich der Genauichkeit von Dezimalbruch und Kettenbruch', Abh. Math. Seminar Hamburg, 27 (1964), 142–144.

    Google Scholar 

  11. Attila Pethó, ‘On the resolution of Thue inequalities', J. Symb. Comp. 4 (1987), 103–109.

    Google Scholar 

  12. R. D. Richtmyer, Marjorie Devaney and N. Metropolis, ‘Continued fraction expansionsm of algebraic numbers', Numer. Math. 4 (1962), 68–84.

    Google Scholar 

  13. A. Schönhage, ‘Schnelle Berechnung von Kettenbruchentwicklungen', Acta Informatica 1 (1971), 139–144

    Google Scholar 

  14. P. Shiu, ‘Computation of continued fractions without input values', Math. Comp. 64 (1995), 1307–1317.

    Google Scholar 

  15. H. M. Stark, ‘An explanation of some exotic continued fractions found by Brillhart', in Computers in Number Theory, A. O. L. Atkin and B. J. Birch eds., (Academic Press, 1971), 21–35.

    Google Scholar 

  16. Benjamin M.M. de Weger, Complete solution of a Thue inequality, Technical Report 9561/B, December 15, 1995, Econometric Institute, Erasmus University Rotterdam.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Henri Cohen

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brent, R.P., van der Poorten, A.J., te Riele, H.J.J. (1996). A comparative study of algorithms for computing continued fractions of algebraic numbers. In: Cohen, H. (eds) Algorithmic Number Theory. ANTS 1996. Lecture Notes in Computer Science, vol 1122. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61581-4_39

Download citation

  • DOI: https://doi.org/10.1007/3-540-61581-4_39

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61581-1

  • Online ISBN: 978-3-540-70632-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics