[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Soundness and completeness of non-classical extended SLD-resolution

  • Conference paper
  • First Online:
Extensions of Logic Programming (ELP 1996)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1050))

Included in the following conference series:

Abstract

We consider theoretical (mathematical) model of extended logic programming in many valued logic with arbitrary triple of connectives (seq, et1, et2), where et1 evaluates modus ponens containing the implication seq and et2 is the conjunction from bodies of clauses. Our motivation comes from MYCIN-like expert systems written in Prolog with uncertainty reasoning mechanism. Our declarative semantics is based on generalization of P. Hájek's RPL and RQL logic. We introduce a procedural semantics and prove soundness and completeness of this semantics for definite programs with confidence factors.

This work was supported by the grant 2/1224/95 of the Slovak Grant Agency for Science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Apt, K. R.: Logic programming. In: van Leeuwen, J.(Ed.): Handbook of Theoretical Computer Science, Vol. B, Formal methods and semantics, 493–574, Elsevier, 1990

    Google Scholar 

  2. The Arity/Expert language. Arity Corp., Concord MA, 1986

    Google Scholar 

  3. Ding L., Shen Z. L., Mukaidono M.: Fuzzy linear resolution as the inference engine of intelligent systems. In: Ras Z. W. (Ed.): Methodologies for Intelligent Systems, Volume 4, Elsevier Science Publ., Amsterdam, 1989, 1–8

    Google Scholar 

  4. Dubois D., Lang J., Prade H.: Fuzzy sets in approximate reasoning, Part 2: Logical approaches. Fuzzy Sets and Systems 40 (1991) 203–244

    Google Scholar 

  5. Gottwald, S.: Mehrwertige Logik. Akademie Verlag, Berlin, 1988

    Google Scholar 

  6. Hájek, P.: Fuzzy logic and arithmetical hierarchy I. Fuzzy Sets and Systems (to appear)

    Google Scholar 

  7. Hájek, P.: Fuzzy logic and arithmetical hierarchy II. Preprint, 1995

    Google Scholar 

  8. Hájek, P.: Fuzzy logic from the logical point of view. In: Bartošek, M., Staudek, J., Wiedermann, J. (Eds.): SOFSEM'95: Theory and Practice of Informatics, 31–49, Lecture Notes in Comp. Sci., 1012, Springer, Berlin, 1995

    Google Scholar 

  9. Klawonn, K., Kruse, K.: A Lukasiewicz logic based Prolog. Mathware Soft Comput. 1 (1994) 5–29

    Google Scholar 

  10. Lloyd, J.W.: Foundation of Logic Programming. Springer Verlag, Berlin, 1987

    Google Scholar 

  11. Meritt, D.: Building Expert Systems in Prolog. Springer Verlag, Berlin, 1989

    Google Scholar 

  12. Mukaidono, M., Kikuchi, H.: Foundations of fuzzy logic programming. In: Wang, P-Z., Loe, K-F.(Eds.): Between Mind and Computer, 225–244, Advances in Fuzzy Systems — Applications and Theory, Vol.1, World Scientific Publ., Singapore

    Google Scholar 

  13. Novák, V.: On the syntactico-semantical completeness of first-order fuzzy logic I, II. Kybernetika 26 (1990) 47–26, 134–152

    Google Scholar 

  14. Pavelka, J.: On fuzzy logic I, II, III. Zeitschr. f. Math. Logik und Grundl. der Math. 25 (1979) 45–52, 119–134, 447–464

    Google Scholar 

  15. Shortliffe, E. H., Buchanan, B. G.: A model of inexact reasoning in medicine. Math. Biosci. 23 (1975) 351–379

    Google Scholar 

  16. Sterling, L., Shapiro, E.: The Art of Prolog. MIT Press, Cambridge MA, 1986

    Google Scholar 

  17. Vojtáš, P., Paulík, L., Lieskovský, M.: Expert systems and different logic systems. In: Žižka, J., Brazdil, P. (Eds.): Artificial Intelligence Techniques AIT'95, 233–239, Published by Tech. Univ., Brno, 1995

    Google Scholar 

  18. Vojtáš P., Paulík, L.: Logical Programming in RPL and RQL. In: Bartosek, M., Staudek, J., Wiedermann, J. (Eds.): SOFSEM'95: Theory and Practice of Informatics, 487–492, Lecture Notes in Comp. Sci., 1012, Springer, Berlin, 1995

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Roy Dyckhoff Heinrich Herre Peter Schroeder-Heister

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag

About this paper

Cite this paper

Vojtás, P., Paulík, L. (1996). Soundness and completeness of non-classical extended SLD-resolution. In: Dyckhoff, R., Herre, H., Schroeder-Heister, P. (eds) Extensions of Logic Programming. ELP 1996. Lecture Notes in Computer Science, vol 1050. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60983-0_20

Download citation

  • DOI: https://doi.org/10.1007/3-540-60983-0_20

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60983-4

  • Online ISBN: 978-3-540-49751-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics