[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Understanding Krylov Methods in Finite Precision

  • Conference paper
  • First Online:
Numerical Analysis and Its Applications (NAA 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1988))

Included in the following conference series:

Abstract

Krylov methods are, since their introduction in the 1980s, the most heavily used methods to solve the two problems Ax = b and Ax = λx, x ≠ 0 where the matrix A is very large. However, the understanding of their numerical behaviour is far from satisfactory. We propose a radically new viewpoint for this longstanding enigma, which shows mathematically that the Krylov-type method works best when it is most ill-conditioned.

CERFACS Technical Report TR/PA/00/40

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 87.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chatelin, F.: Spectral approximation of linear operators. Academic Press (1983).

    Google Scholar 

  2. Chaitin-Chatelin, F.: Comprendre les méthodes de Krylov en précision finie: le programme du Groupe Qualitative Computing au CERFACS. CERFACS report TR/PA/00/11 (2000).

    Google Scholar 

  3. Chaitin-Chatelin, F., Frayssé, V.: Lectures on finite precision computations. SIAM (1996).

    Google Scholar 

  4. Chaitin-Chatelin, F., Gratton, S., Traviesas, E.: Sensibilité des méthodes de Krylov au vecteur de départ. Work in progress. 189

    Google Scholar 

  5. Chaitin-Chatelin, F., Harrabi, A., Ilahi, A.: About Hölder condition number and the stratification diagram for defective eigenvalues. To appear in IMACS J. on Math. of Comp. CERFACS report TR/PA/99/19 (1999).

    Google Scholar 

  6. Chaitin-Chatelin, F., Toumazou, V., Traviesas, E.: Accuracy assessment for eigencomputations: variety of backward errors and pseudospectra. Lin. Alg Appl. 309 (2000) 73–83.

    Article  MATH  MathSciNet  Google Scholar 

  7. Saad, Y.: Numerical methods for large eigenvalue problems. Algorithms and architectures for advanced scientific computing. Manchester University Press (1992).

    Google Scholar 

  8. Saad, Y.: Iterative methods for sparse linear systems. PWS, Minnesota (1995).

    Google Scholar 

  9. Traviesas, E.: Sur le déploiement du champ spectral d’une matrice, Ph.D. thesis, University Toulouse I and CERFACS (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chaitin-Chatelin, F., Traviesas, E., Plantié, L. (2001). Understanding Krylov Methods in Finite Precision. In: Vulkov, L., Yalamov, P., Waśniewski, J. (eds) Numerical Analysis and Its Applications. NAA 2000. Lecture Notes in Computer Science, vol 1988. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45262-1_23

Download citation

  • DOI: https://doi.org/10.1007/3-540-45262-1_23

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41814-6

  • Online ISBN: 978-3-540-45262-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics