Abstract
Krylov methods are, since their introduction in the 1980s, the most heavily used methods to solve the two problems Ax = b and Ax = λx, x ≠ 0 where the matrix A is very large. However, the understanding of their numerical behaviour is far from satisfactory. We propose a radically new viewpoint for this longstanding enigma, which shows mathematically that the Krylov-type method works best when it is most ill-conditioned.
CERFACS Technical Report TR/PA/00/40
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chatelin, F.: Spectral approximation of linear operators. Academic Press (1983).
Chaitin-Chatelin, F.: Comprendre les méthodes de Krylov en précision finie: le programme du Groupe Qualitative Computing au CERFACS. CERFACS report TR/PA/00/11 (2000).
Chaitin-Chatelin, F., Frayssé, V.: Lectures on finite precision computations. SIAM (1996).
Chaitin-Chatelin, F., Gratton, S., Traviesas, E.: Sensibilité des méthodes de Krylov au vecteur de départ. Work in progress. 189
Chaitin-Chatelin, F., Harrabi, A., Ilahi, A.: About Hölder condition number and the stratification diagram for defective eigenvalues. To appear in IMACS J. on Math. of Comp. CERFACS report TR/PA/99/19 (1999).
Chaitin-Chatelin, F., Toumazou, V., Traviesas, E.: Accuracy assessment for eigencomputations: variety of backward errors and pseudospectra. Lin. Alg Appl. 309 (2000) 73–83.
Saad, Y.: Numerical methods for large eigenvalue problems. Algorithms and architectures for advanced scientific computing. Manchester University Press (1992).
Saad, Y.: Iterative methods for sparse linear systems. PWS, Minnesota (1995).
Traviesas, E.: Sur le déploiement du champ spectral d’une matrice, Ph.D. thesis, University Toulouse I and CERFACS (2000).
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chaitin-Chatelin, F., Traviesas, E., Plantié, L. (2001). Understanding Krylov Methods in Finite Precision. In: Vulkov, L., Yalamov, P., Waśniewski, J. (eds) Numerical Analysis and Its Applications. NAA 2000. Lecture Notes in Computer Science, vol 1988. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45262-1_23
Download citation
DOI: https://doi.org/10.1007/3-540-45262-1_23
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-41814-6
Online ISBN: 978-3-540-45262-1
eBook Packages: Springer Book Archive