[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

On the Complexity of Resolution with Bounded Conjunctions

Extended Abstract

  • Conference paper
  • First Online:
Automata, Languages and Programming (ICALP 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2380))

Included in the following conference series:

Abstract

We analyze size and space complexity of Res(k), a family of proof systems introduced by Krajíček in [16] which extend Resolution by allowing disjunctions of conjunctions of up to k ≥ 1 literals. We prove the following results: (1) The treelike Res(k) proof systems form a strict hierarchy with respect to proof size and also with respect to space. (2) Resolution polynomially simulates treelike Res(k), and is almost exponentially separated from treelike Res(k). (3) The space lower bounds known for Resolution also carry over to Res(k). We obtain almost optimal space lower bounds for PHPn, GTn, Random Formulas, CTn, and Tseitin Tautologies.

The authors were partly supported by the DAAD project Acciones integradas Hispano-Alemanas no. 70116. J.L. Esteban was also partly supported by MEC through grant PB 98-0937-C04 (FRESCO Project). N. Galesi was also partly supported by Spanish grant TIC2001-1577-C03-02 and by CSERC Canadian funds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M. Alekhnovich, E. Ben-Sasson, A. Razborov, A. Wigderson. Space complexity in propositional calculus. STOC 2000 pp. 358–367. To appear in SIAM J. Comput.

    Google Scholar 

  2. M. Alekhnovich, A. Razborov. Resolution is not automatizable unless W[P] is not tractable. FOCS 2001. pp. 190–199.

    Google Scholar 

  3. A. Atserias, M. L. Bonet. On the automatizability of Resolution and related propositional proof systems. TR02-010, ECCC, 2002.

    Google Scholar 

  4. A. Atserias, M.L. Bonet, J.L. Esteban. Lower Bounds for the Weak Pigeonhole Principle Beyond Resolution. ICALP 2001, pp. 1005–1016.

    Google Scholar 

  5. P. Beame, T. Pitassi. Simplified and Improved Resolution Lower Bounds. FOCS 1996, pp. 274–282.

    Google Scholar 

  6. E. Ben-Sasson. Size-Space tradeoffs for Resolution. To appear in,STOC 2002.

    Google Scholar 

  7. E. Ben-Sasson, N. Galesi. Space Complexity of Random Formulae in Resolution. CCC 2001, pp. 42–51.

    Google Scholar 

  8. E. Ben-Sasson, R. Impagliazzo, A. Wigderson. Near optimal separation of treelike and general Resolution. TR00-005, ECCC, 2000.

    Google Scholar 

  9. E. Ben-Sasson, A. Wigderson. Short Proofs Are Narrow—Resolution Made Simple. J. A CM 48(2) pp. 149–168, 2001.

    MATH  MathSciNet  Google Scholar 

  10. M.L. Bonet, J.L. Esteban, N. Galesi, J. Johannsen. On the Relative Complexity of Resolution Refinements and Cutting Planes Proof Systems. SIAM J. Comput. 30(5) pp. 1462–1484, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  11. P. Beame, R.M. Karp, T. Pitassi, M.E. Saks. On the Complexity of Unsatisfiability Proofs for Random k-CNF Formulas. STOC 1998, pp. 561–571.

    Google Scholar 

  12. M.L. Bonet, T. Pitassi, R. Raz On Interpolation and Automatization for Frege Systems. SIAM J. Comput. 29(6) pp. 1939–1967, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  13. S. Cook, R. Reckhow. The relative efficiency of propositional proof systems. J. Symbolic Logic 44 pp. 36–50, 1979.

    Article  MathSciNet  Google Scholar 

  14. J.L. Esteban, J. Torán. Space bounds for resolution. Inform. and Comput. 171(1) pp. 84–97, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  15. A. Haken. The Intractability of Resolution. Theoret. Comp. Sci. 39, 297–308, 1985.

    Article  Google Scholar 

  16. J. Krajíček. On the weak pigeonhole principle. Fund. Math. 170(1–3) pp. 123–140, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Krajíček. Lower Bounds to the Size of Constant-Depth Propositional Proofs. J. Symbolic Logic 59(1) pp. 73–86, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Krajíček, P. Pudlák. Some Consequences of Cryptographical Conjectures for S 21 and EF. Inform. and Comput. 140(1) pp. 82–94, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Maciel, T. Pitassi, A.R. Woods. A new proof of the weak pigeonhole principle. STOC 2000 pp. 368–377.

    Google Scholar 

  20. W.J. Paul, R.E. Tarjan, J.R. Celoni. Space bounds for a game on graphs. Math. Systems Theory, 10 pp. 239–251, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  21. P. Pudlák, R. Impagliazzo. Lower bounds for DLL algorithms. SODA 2000 pp. 128–136.

    Google Scholar 

  22. R. Raz. Resolution Lower Bounds for the Weak Pigeonhole Principle. TR01-21. ECCC, 2001.

    Google Scholar 

  23. A. Razborov. Resolution Lower Bounds for Perfect Matching Principles.MS, 2001.

    Google Scholar 

  24. G.S. Tseitin. On the complexity of derivation in propositional calculus. Studies in Constructive Mathematics and Mathematical Logic, Part 2. pp. 115–125. Consultants Bureau, New York-London, 1968.

    Google Scholar 

  25. A. Urquhart. Hard examples for resolution. J. A CM 34(1) pp. 209–219, 1987.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Esteban, J.L., Galesi, N., Messner, J. (2002). On the Complexity of Resolution with Bounded Conjunctions. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales, R., Conejo, R., Hennessy, M. (eds) Automata, Languages and Programming. ICALP 2002. Lecture Notes in Computer Science, vol 2380. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45465-9_20

Download citation

  • DOI: https://doi.org/10.1007/3-540-45465-9_20

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43864-9

  • Online ISBN: 978-3-540-45465-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics