[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Stochastic Networks with Subthreshold Oscillations and Spiking Activity

  • Conference paper
  • First Online:
Computational Methods in Neural Modeling (IWANN 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2686))

Included in the following conference series:

  • 1123 Accesses

Abstract

Subthreshold oscillations actively participate in information coding and processing of living neural systems. In this paper we present a new model of stochastic neural networks in which the neurons display subthreshold oscillations and spiking activity. The network is built with diffusive coupling among close neighbors. We show that these stochastic networks are able to generate a wide variety of coherent spatio-temporal patterns. Emerging phenomena in this networks can be of great interest in applications related to the coding and control of rhythms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Braun H.A., Wissing H., Schäfer k. and Hirsch, M.C. 1994. Oscillation and noise determine signal transduction in shark multimodal sensory cells. Nature 367, 270–273.

    Google Scholar 

  2. De Zeeuw C.I., Simpson J.I, Hoogenaraad C.C., Galjart N., Koekkoek S.K.E., and Ruigrok T.J.H. 1998. Microcircuitry and function of the inferior olive. Trends Neurosci 21: 391–400.

    Google Scholar 

  3. Leznik E., Makarenko V. and Llinas R. 2002. Electrotonically Mediated Oscillatory Patterns in Neuronal Ensembles: An In Vitro Voltage-Dependent Dye-Imaging Study in the Inferior Olive. Journal of Neurocience 22(7):2804–2815.

    Google Scholar 

  4. P. Varona, J.J. Torres, H.D.I. Abarbanel, V.I. Makarenko R. Llinás and M.I. Rabinovich. 1999. Modeling collective oscillations in the inferior olive. Soc. for Neurosci. Abs. 25, (368.8).

    Google Scholar 

  5. Llinás R. and Welsh J.P. 1993. On the cerebellum and motor learning. Curr. Opin. Neurobiol. 3, 958.

    Google Scholar 

  6. Welsh J.P., Lang E.J., Sugihara I., Llinás R. 1995. Dynamic organization of motor control within the olivocerebellar system. Nature. 374, 453–456.

    Google Scholar 

  7. Ito M. 1982. Cerebellar control of the vestibulo-ocular reex-around the occulus hypothesis. Annual Review of Neuroscience 5: 275–96.

    Google Scholar 

  8. Varona P., Aguirre C., Torres J.J., Rabinovich M.I., Abarbanel H.D.I.. 2002. Spatiotemporal patterns of network activity in the inferior olive. Neurocomputing 44–46: 685–690.

    Google Scholar 

  9. Schweighofer N., Doya K., Kawato M.. 1999. Electrophysiological properties of inferior olive neurons: A compartmental model. J. Neurophysiol. 82(2): 804–817.

    Google Scholar 

  10. Gerstein G.L. and Mandelbrot B. 1964. Random Walk Models for the Spike Activity of Single Neuron. Biophys. J. 4, 41–68.

    Google Scholar 

  11. Rodríguez F.B., Suárez A. and López V. 2001 Period Focusing Induced By Network Feedback in Populations of Noisy Integrate-and-Fire Neurons. Neural Computation 13, 2495–2516.

    Google Scholar 

  12. Usher M., Stemmler M. 1995. Dynamic Pattern Formation Leads to 1/f Noise in Neural Populations. Physical Review Letters, 74(2): 326–329.

    Google Scholar 

  13. Fohlmeister, C, Gerstner W, Ritz, R. van Hemmen J.L. 1995. Spontaneous Excitations in the Visual Cortex: Stripes, Spirals, Rings, and Collective Bursts. Neural Computation 7, 905–914.

    Google Scholar 

  14. Lin J.K., Pawelzik K., Ernst U., and Sejnowski T.J. 1998. Irregular synchronous activity in stochastically-coupled networks of integrate-and-fire neurons. Network 9(3), 333–344.

    Google Scholar 

  15. Rabinovich M.I, Torres J.J., Varona P., Huerta R., Weidman P. 1999. Origin of Coherent Structures in a Discrete Chaotic Medium. Physical Review E, 60(2), R1130–R1133.

    Google Scholar 

  16. Rabinovich M., Ezersky A.B., Weidman P., The Dynamics of Patterns. World Scientific, Singapore, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Castellanos, N.P., Rodríguez, F.B., Varona, P. (2003). Stochastic Networks with Subthreshold Oscillations and Spiking Activity. In: Mira, J., Álvarez, J.R. (eds) Computational Methods in Neural Modeling. IWANN 2003. Lecture Notes in Computer Science, vol 2686. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44868-3_5

Download citation

  • DOI: https://doi.org/10.1007/3-540-44868-3_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40210-7

  • Online ISBN: 978-3-540-44868-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics