[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Almost Optimal Private Information Retrieval

  • Conference paper
  • First Online:
Privacy Enhancing Technologies (PET 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2482))

Included in the following conference series:

Abstract

A private information retrieval (PIR) protocol allows a user to retrieve one of N records from a database while hiding the identity of the record from the database server.

With the initially proposed PIR protocols to process a query, the server has to process the entire database, resulting in an unacceptable response time for large databases. Later solutions make use of some preprocessing and offline communication, such that only O(1) online computation and communication are performed to execute a query. The major drawback of these solutions is offline communication, comparable to the size of the entire database.

Using a secure coprocessor we construct a PIR scheme that eliminates both drawbacks. Our protocol requires O(1) online computation and communication, periodical preprocessing, and zero offline communication. The protocol is almost optimal. The only parameter left to improve is the server’s preprocessing complexity - the least important one.

This research was supported by the German Research Society, Berlin-Brandenburg Graduate School in Distributed Information Systems (DFG grant no. GRK 316.)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. D. Asonov and J.-C. Freytag. Almost optimal private information retrieval. Tech. Report HUB-IB-156, Humboldt University Berlin, November 2001.

    Google Scholar 

  2. D. Asonov and J.-C. Freytag. Private information retrieval, optimal for users and secure coprocessors. Tech. Report HUB-IB-159, Humboldt University Berlin, May 2001.

    Google Scholar 

  3. A. Ambainis. Upper bound on the communication complexity of private information retrieval. In Proceedings of 24th ICALP, 1997.

    Google Scholar 

  4. D. Asonov. Private information retrieval-an overview and current trends. In Proceedings of the ECDPvA Workshop, Informatik 2001, Vienna, Austria, September 2001.

    Google Scholar 

  5. F. Bao, R. H. Deng, and P. Feng. An efficient and practical scheme for privacy protection in the e-commerce of digital goods. In Proc. of the 3rd Intl. Conference on Information Security and Cryptology, December 2000.

    Google Scholar 

  6. A. Beimel and Y. Ishai. Information-theoretic private information retrieval: A unified construction. ECCC Report TR01-015, February 2001.

    Google Scholar 

  7. A. Beimel, Y. Ishai, and T. Malkin. Reducing the servers computation in private information retrieval: PIR with preprocessing. In Proceedings of CRYPTO’00, 2000.

    Google Scholar 

  8. B. Chor and N. Gilboa. Computationally private information retrieval. In Proceedings of 29th STOC, 1997.

    Google Scholar 

  9. B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information retrieval. In Proceedings of 36th FOCS, 1995.

    Google Scholar 

  10. G. D. Crescenzo, Y. Ishai, and R. Ostrovsky. Universal service-providers for database private information retrieval. In Proceedings of 17th PODC, 1998.

    Google Scholar 

  11. C. Cachin, S. Micali, and M. Stadler. Computationally private information retrieval with polylogarithmic communication. In Proceedings of EURO-CRYPT’99, 1999.

    Google Scholar 

  12. J. G. Dyer, M. Lindemann, R. Perez, R. Sailer, L. Doorn, S. Smith, and S. Weingart. Building the IBM 4758 Secure Coprocessor. In IEEE Computer, 43(10), October 2001.

    Google Scholar 

  13. Y. Gertner, S. Goldwasser, and T. Malkin. A random server model for private information retrieval. In Proceedings of 2nd RANDOM, 1998.

    Google Scholar 

  14. E. T. Jaynes. Probability theory: the logic of science. http://omega.math.albany.edu:8008/JaynesBook.html, 1994.

  15. D. E. Knuth. The art of computer programming, volume 2. Addison-Wesley, second edition, Jan 1981.

    Google Scholar 

  16. E. Kushilevitz and R. Ostrovsky. Replication is NOT needed: Single-database computationally private information retrieval. In Proceedings of 38th FOCS, 1997.

    Google Scholar 

  17. A. Kiayias and M. Yung. Secure games with polynomial expressions. In Proceedings of 28th ICALP, 2001.

    Google Scholar 

  18. B. Schneier. Applied Cryptography. Wiley, New York, 2nd edition, 1996.

    Google Scholar 

  19. Shannon. A mathematical theory of communication. Bell Systems Technical Journal, 27, 1948.

    Google Scholar 

  20. C. P. Schnorr and M. Jakobsson. Security of signed elgamal encryption. In Proceedings of ASIACRYPT’00, LNCS 1976, December 2000.

    Google Scholar 

  21. S. W. Smith, E. R. Palmer, and S. H. Weingart. Using a high-performance, programmable secure coprocessor. In Proceedings of the 2nd International Conference on Financial Cryptography, February 1998.

    Google Scholar 

  22. S. W. Smith and D. Safford. Practical private information retrieval with secure coprocessors. Technical report, IBM Research Division, T.J. Watson Research Center, July 2000.

    Google Scholar 

  23. S. W. Smith and D. Safford. Practical server privacy with secure coprocessors. IBM Systems Journal, 40(3), September 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Asonov, D., Freytag, JC. (2003). Almost Optimal Private Information Retrieval. In: Dingledine, R., Syverson, P. (eds) Privacy Enhancing Technologies. PET 2002. Lecture Notes in Computer Science, vol 2482. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36467-6_16

Download citation

  • DOI: https://doi.org/10.1007/3-540-36467-6_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00565-0

  • Online ISBN: 978-3-540-36467-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics