[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Markov Random Field Based Hybrid Algorithm with Simulated Annealing and Genetic Algorithm for Image Segmentation

  • Conference paper
Advances in Natural Computation (ICNC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4221))

Included in the following conference series:

Abstract

In this paper, a simulated algorithm-genetic (SA-GA) hybrid algorithm based on a Markov Random Field (MRF) model (MRF-SA-GA) is introduced for image de-noising and segmentation. In this algorithm, a population of potential solutions is maintained at every generation, and for each solution a fitness value is calculated with a fitness function, which is constructed based on the MRF potential function according to Metropolis algorithm and Bayesian rule. Two experiments are selected to verify the performance of the hybrid algorithm, and the preliminary results show that MRF-SA-GA outperforms SA and GA alone.

Supported by the grants from the 973 Project (#2003CB716100), NSFC (#90208003, #30525030, # 30500140).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wesley, S., Hairong, Q.: Machine Vision. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  2. Tan, Y.P., Yap, K.H., Wang, L.P. (eds.): Intelligent Multimedia Processing with Soft Computing. Springer, Berlin, Heidelberg, New York (2004)

    Google Scholar 

  3. Stan, L.: Markov Random Field Modeling in Image Analysis. Springer, Tokyo, Japan (2001)

    MATH  Google Scholar 

  4. Karvonen, J.A.: Baltic Sea ice SAR segmentation and classification using modified pulse-coupled neural networks. IEEE Trans. Geosciences and Remote Sensing 42, 1566–1574 (2004)

    Article  Google Scholar 

  5. Stuart, G., Donald, G.: Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images. IEEE Trans. on Pattern Analysis and Machine Intelligence 6(6), 721–741 (1984)

    Article  MATH  Google Scholar 

  6. Halgamuge, S., Wang, L.P. (eds.): Classification and Clustering for Knowledge Discovery. Springer, Berlin (2005)

    MATH  Google Scholar 

  7. Xiao, W., Han, W.: Evolutionary Optimization with Markov Random Field Prior. IEEE Trans. on Evolutionary Computation 8(6), 567–579 (2004)

    Article  Google Scholar 

  8. Dinchang, T., Chihching, L.: A Genetic Algorithm for MRF-based Segmentation of Multi-spectral Textured Images. Patter Recognition Letters 20, 1499–1510 (1999)

    Article  Google Scholar 

  9. Suchendra, M.B., Hui, Z.: Image Segmentation Using Evolutionary Computation. IEEE Tran. on Evolutionary Computation 3(1), 1–21 (1999)

    Article  Google Scholar 

  10. Salima, O., Mohamed, B.: MRF-based Images Segmentation Using Ant Colony System. Electronic Letters on Computer Vision and Image Analysis 2(2), 12–24 (2003)

    Google Scholar 

  11. Jinhao, X., Yujin, Z., Xinggang, L.: Dynamic Image Segmentation Using 2-D Genetic Algorithms. Acta Automatica Sinica 26(5), 685–689 (2000)

    Google Scholar 

  12. Yanqiu, F., Wufan, C.: A New Algorithm for Image Segmentation Based on Gibbs Random Field and Fuzzy C-Means clustering. Acta Electronica Sinica 32(4), 645–647 (2004)

    Google Scholar 

  13. Lahlou, A., Wojciech, P.: Hierarchical Markov Fields and Fuzzy Image Segmentation. In: Second IEEE International Conference on Intelligent Processing Systems (ICIPC 1998), Gold Coast, Australia, August,4-7 (1998)

    Google Scholar 

  14. Hu, R., Fahmy, M.M.: Texture Segmentation based on a hierachical MRF model. Signal processing 26, 285–305 (1992)

    Article  Google Scholar 

  15. Zhaobao, Z.: Markov Random Field Method for Image Analysis. Wuhan Measurement Technology University Press (2000)

    Google Scholar 

  16. http://www.cma.mgh.harvard.edu/ibsr/

  17. Dembele, D., Kastner, P.: Fuzzy C-Means Method for Clustering Microarry Data. Bioinformatics 19(8), 973–980 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Du, X., Li, Y., Chen, W., Zhang, Y., Yao, D. (2006). A Markov Random Field Based Hybrid Algorithm with Simulated Annealing and Genetic Algorithm for Image Segmentation. In: Jiao, L., Wang, L., Gao, Xb., Liu, J., Wu, F. (eds) Advances in Natural Computation. ICNC 2006. Lecture Notes in Computer Science, vol 4221. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11881070_95

Download citation

  • DOI: https://doi.org/10.1007/11881070_95

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45901-9

  • Online ISBN: 978-3-540-45902-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics