[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Straightest Paths on Meshes by Cutting Planes

  • Conference paper
Geometric Modeling and Processing - GMP 2006 (GMP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4077))

Included in the following conference series:

Abstract

Geodesic paths and distances on meshes are used for many applications such as parameterization, remeshing, mesh segmentation, and simulations of natural phenomena. Noble works to compute shortest geodesic paths have been published. In this paper, we present a new approach to compute the straightest path from a source to one or more vertices on a manifold mesh with a boundary. A cutting plane with a source and a destination vertex is first defined. Then the straightest path between these two vertices is created by intersecting the cutting plane with faces on the mesh. We demonstrate that our straightest path algorithm contributes to reducing distortion in a shape-preserving linear parameterization by generating a measured boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chen, J., Han, Y.: Shortest Paths on a Polyhedron; Part I: Computing Shortest Paths. Int. J. Comp. Geom. & Appl. 6(2) (1996)

    Google Scholar 

  2. Desbrun, M., Meyer, M., Alliez, P.: Intrinsic Parameterizations of Surface Meshes. In: Eurographics 2002 Conference Proceeding (2002)

    Google Scholar 

  3. Floater, M.: Parametrization and smooth approximation of surface triangulations. Computer Aided Geometric Design (1997)

    Google Scholar 

  4. Floater, M.: Mean Value Coordinates. Comput. Aided Geom. Des. (2003)

    Google Scholar 

  5. Kaneva, B., O’Rourke, J.: An implementation of Chen and Han’s sortest paths algorithm. In: Proc. of the 12th Canadian Conf. on Computational Geometry (2000)

    Google Scholar 

  6. Kanai, T., Suzuki, H.: Approximate Shortest Path on a Polyhedral Surface Based on Selective Refinement of the Discrete Graph and Its Applications. Proc. Geometric Modeling and Processing 2000, HongKong (2000)

    Google Scholar 

  7. Kimmel, R., Sethian, J.A.: Computing Geodesic Paths on Manifolds. Proc. Natl. Acad. Sci. USA 95 (1998)

    Google Scholar 

  8. Lee, Y., Kim, H., Lee, S.: Mesh Parameterization with a Virtual Boundary. Computer and Graphics 26 (2002)

    Google Scholar 

  9. Lee, H., Kim, L., Meyer, M., Desbrun, M.: Meshes on Fire. In: Computer Animation and Simulation 2001, Eurographics (2001)

    Google Scholar 

  10. Lee, H., Tong, Y., Desbrun, M.: Geodesics-Based One-to-One Parameterization of 3D Triangle Meshes. IEEE Multimedia 12(1) (January/March 2005)

    Google Scholar 

  11. Mitchell, J.S.B.: Geometric Shortest Paths and network optimization. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of Computational Geometry. Elsevier Science, Amsterdam (2000)

    Google Scholar 

  12. Mitchell, J.S.B., Mount, D.M., Papadimitriou, C.H.: The Discrete Geodesic Problem. SIAM J. of Computing 16(4) (1987)

    Google Scholar 

  13. Peyré, G., Cohen, L.: Geodesic Re-meshing and Parameterization Using Front Propagation. In: Proceedings of VLSM 2003 (2003)

    Google Scholar 

  14. Polthier, K., Schmies, M.: Straightest Geodesics on Polyhedral Surfaces. Mathematical Visualization (1998)

    Google Scholar 

  15. Polthier, K., Schmies, M.: Geodesic Flow on Polyhedral Surfaces. In: Proceedings of Eurographics-IEEE Symposium on Scientific Visualization 1999 (1999)

    Google Scholar 

  16. Riken, T., Suzuki, H.: Approximate Shortest Path on a Polyhedral Surface Based on Selective Refinement of the Discrete Graph and Its Applications. In: Geometric Modeling and Processing 2000, Hongkong (2000)

    Google Scholar 

  17. Sander, P.V., Snyder, J., Gortler, S.J., Hoppe, H.: Texture Mapping Progressive Meshes. In: Proceedings of SIGGRAPH 2001 (2001)

    Google Scholar 

  18. Sifri, O., Sheffer, A., Gotsman, C.: Geodesic-based Surface Remeshing. In: Proceedings of 12th Intnl. Meshing Roundtable (2003)

    Google Scholar 

  19. Surazhsky, V., Surazhsky, T., Kirsanov, D., Gortler, S., Hoppe, H.: Fast Exact and Approximate Geodesics on Meshes. In: ACM SIGGRAPH 2005 Conference Proceedings (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lee, S., Han, J., Lee, H. (2006). Straightest Paths on Meshes by Cutting Planes. In: Kim, MS., Shimada, K. (eds) Geometric Modeling and Processing - GMP 2006. GMP 2006. Lecture Notes in Computer Science, vol 4077. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11802914_47

Download citation

  • DOI: https://doi.org/10.1007/11802914_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36711-6

  • Online ISBN: 978-3-540-36865-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics