[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

The Extended Probabilistic Powerdomain Monad over Stably Compact Spaces

  • Conference paper
Theory and Applications of Models of Computation (TAMC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3959))

Abstract

For the semantics of probabilistic features in programming mainly two approaches are used for building models. One is the Giry monad of Borel probability measures over metric spaces, and the other is Jones’ probabilistic powerdomain monad [6] over dcpos (directed complete partial orders). This paper places itself in the second domain theoretical tradition. The probabilistic powerdomain monad is well understood over continuous domains. In this case the algebras of the monad can be described by an equational theory [6, 9,5]. It is the aim of this work to obtain similar results for the (extended) probabilistic powerdomain monad over stably compact spaces. We mainly want to determine the algebras of this powerdomain monad and the algebra homomorphisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abramsky, S., Jung, A.: Domain theory. In: Abramsky, S., Gabbay, D.M., Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, vol. 3, pp. 1–168. Clarendon Press, Oxford (1994)

    Google Scholar 

  2. Alfsen, E.M.: Compact Convex Sets and Boundary Integrals. In: Ergebnisse der Mathematik und iherer Grenzgebiete, vol. 57. Springer, Heidelberg (1971)

    Google Scholar 

  3. Alvarez Manilla, M., Jung, A., Keimel, K.: The probabilistic powerspace for stably compact spaces. Theoretical Computer Science 328, 221–244 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Fedorchuk, V.V.: Probability measures in topology. Russian Mathematical Surveys 46(1), 41–80 (1991)

    Article  MathSciNet  Google Scholar 

  5. Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M.W., Scott, D.S.: Continuous Lattices and Domains. In: Encyclopedia of Mathematics and its Applications, vol. 93, Cambridge University Press, Cambridge (2003)

    Google Scholar 

  6. Jones, C.: Probabilistic Non-determinism. PhD thesis, Department of Computer Science, University of Edinburgh, Edinburgh, p. 201 (1990)

    Google Scholar 

  7. Keimel, K.: Topological cones: Foundations for a domains theoretical sematics combining probability and nondeterminism. Electronic Notes in Theoretical Computer Science (to appear)

    Google Scholar 

  8. Keimel, K., Roth, W.: Ordered Cones and Approximation, Lecture Notes in Mathematics. vol. 1517 vi+134 Springer Verlag, (1992)

    Google Scholar 

  9. Kirch, O.: Bereiche und Bewertungen. Master’s thesis, Technische Hochschule Darmstadt, 77pp. (June 1993), http://www.mathematik.tu-darmstadt.de/ags/ag14/papers/kirch/

  10. qNachbin, L.: Topology and Order. Von Nostrand, Princeton, N.J., 1965. Reprinted by Robert E. Kreiger Publishing Co., Huntington (1967)

    Google Scholar 

  11. Plotkin, G.D.: A domain-theoretic Banach-Alaoglu theorem. Mathematical Structures in Computer Science (to appear)

    Google Scholar 

  12. Roth, W.: Hahn-Banach type theorems for locally convex cones. Journal of the Australian Mathematical Society 68(1), 104–125 (2000)

    Article  MATH  Google Scholar 

  13. Schröder, M., Simpson, A.: Probabilistic observations and valuations (Extended Abstract). In: Proceedings of MFPS 21 (2005); to appear in Electronic Notes in Theoretical Computer Science (2006)

    Google Scholar 

  14. Tix, R.: Stetige Bewertungen auf topologischen Räumen. Master’s thesis, Technische Hochschule Darmstadt, 51pp. (June 1995), http://www.mathematik.tu-darmstadt.de/ags/ag14/papers/tix/

  15. Tix, R., Keimel, K., Plotkin, G.D.: Semantic Domains Combining Probabilty and Nondeterminism. Electronic Notes in Theoretical Computer Science 129, 1–104 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cohen, B., Escardo, M., Keimel, K. (2006). The Extended Probabilistic Powerdomain Monad over Stably Compact Spaces. In: Cai, JY., Cooper, S.B., Li, A. (eds) Theory and Applications of Models of Computation. TAMC 2006. Lecture Notes in Computer Science, vol 3959. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11750321_54

Download citation

  • DOI: https://doi.org/10.1007/11750321_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34021-8

  • Online ISBN: 978-3-540-34022-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics