[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Fast Query Point Movement Techniques with Relevance Feedback for Content-Based Image Retrieval

  • Conference paper
Advances in Database Technology - EDBT 2006 (EDBT 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3896))

Included in the following conference series:

Abstract

Target search in content-based image retrieval (CBIR) systems refers to finding a specific (target) image such as a particular registered logo or a specific historical photograph. Existing techniques were designed around query refinement based on relevance feedback, suffer from slow convergence, and do not even guarantee to find intended targets. To address those limitations, we propose several efficient query point movement methods. We theoretically prove that our approach is able to reach any given target image with fewer iterations in the worst and average cases. Extensive experiments in simulated and realistic environments show that our approach significantly reduces the number of iterations and improves overall retrieval performance. The experiments also confirm that our approach can always retrieve intended targets even with poor selection of initial query points and can be employed to improve the effectiveness and efficiency of existing CBIR systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Browne, P., Smeaton, A.F.: Video Information Retrieval Using Objects andOstensive Relevance Feedback. In: Proceedings of the ACM Symposium on Applied Computing (SAC), pp. 1084–1090 (2004)

    Google Scholar 

  2. Carson, C., Belongie, S., Greenspan, H., Malik, J.: Blobworld: image segmentation using expectation-maximization and its application to image querying. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(8), 1026–1038 (2002)

    Article  Google Scholar 

  3. Chakrabarti, K., Michael, O.-B., Mehrotra, S., Porkaew, K.: Evaluating refined queries in top-k retrieval systems. IEEE Transactions on Knowledge and Data Engineering 16(2), 256–270 (2004)

    Article  Google Scholar 

  4. Cox, I.J., Miller, M.L., Minka, T.P., Papathomas, T.V., Yianilos, P.N.: The Bayesian image retrieval system, PicHunter: theory, implementation, and psychophysical experiments. IEEE Transactions on Image Processing 9(1), 20–37 (2000)

    Article  Google Scholar 

  5. Flickner, M., Sawhney, H.S., Ashley, J., Huang, Q., Dom, B., Gorkani, M., Hafner, J., Lee, D., Petkovic, D., Steele, D., Yanker, P.: Query by image and video content: The QBIC system. IEEE Computer 28(9), 23–32 (1995)

    Google Scholar 

  6. Gevers, T., Smeulders, A.: Content-based image retrieval: An overview. In: Medioni, G., Kang, S.B. (eds.) Emerging Topics in Computer Vision, Prentice Hall, Englewood Cliffs (2004)

    Google Scholar 

  7. Hua, K.A., Yu, N., Liu, D.: Query Decomposition: A Multiple Neighborhood Approach to Relevance Feedback Processing in Content-based Image Retrieval. In: Proceedings of the IEEE ICDE Conference (2006)

    Google Scholar 

  8. Ishikawa, Y., Subramanya, R., Faloutsos, C.: MindReader: Querying databases through multiple examples. In: Proceedings of the 24th VLDB Conference, pp. 218–227 (1998)

    Google Scholar 

  9. Kim, D.-H., Chung, C.-W.: Qcluster: relevance feedback using adaptive clustering for content-based image retrieval. In: Proceedings of the ACM SIGMOD Conference, pp. 599–610 (2003)

    Google Scholar 

  10. Liu, D., Hua, K.A., Vu, K., Yu, N.: Efficient Target Search with Relevance Feedback for Large CBIR Systems. In: Proceedings of the 21st Annual ACM Symposium on Applied Computing (2006)

    Google Scholar 

  11. Michael, O.-B., Mehrotra, S.: Relevance feedback techniques in the MARS image retrieval systems. Multimedia Systems (9), 535–547 (2004)

    Google Scholar 

  12. Nakazato, M., Manola, L., Huang, T.S.: ImageGrouper: a group-oriented user interface for content-based image retrieval and digital image arrangement. Journal of Visual Languages and Computing 14(4), 363–386 (2003)

    Article  Google Scholar 

  13. Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction. Springer, New York (1985)

    Google Scholar 

  14. Rui, Y., Huang, T., Ortega, M., Mehrotra, S.: Relevance feedback: A power tool for interactive content-based image retrieval. IEEE Transactions on Circuits and Systems for Video Technology 8(5), 644–655 (1998)

    Article  Google Scholar 

  15. Shen, H.T., Ooi, B.C., Zhou, X.: Towards effective indexing for very large video sequence database. In: Proceedings of the ACM SIGMOD Conference, pp. 730–741 (2005)

    Google Scholar 

  16. Smeulders, A.W.M., Worring, M., Santini, A.G.S., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(12), 1349–1380 (2000)

    Article  Google Scholar 

  17. Smith, J.R., Chang, S.-F.: Transform features for texture classification and discrimination in large image databases. In: Proceedings of the International Conference on Image Processing, pp. 407–411 (1994)

    Google Scholar 

  18. Smith, J.R., Chang, S.-F.: VisualSEEk: A fully automated content-based image query system. In: Proceedings of the 4th ACM Multimedia Conference, pp. 87–98 (1996)

    Google Scholar 

  19. Stricker, M.A., Orengo, M.: Similarity of color images. In: Proceedings of Storage and Retrieval for Image and Video Databases (SPIE), pp. 381–392 (1995)

    Google Scholar 

  20. Vu, K., Hua, K.A., Tavanapong, W.: Image retrieval based on regions of interest. IEEE Transactions on Knowledge and Data Engineering 15(4), 1045–1049 (2003)

    Article  Google Scholar 

  21. Wang, J.Z., Li, J., Wiederhold, G.: SIMPLIcity: Semantics-sensitive integrated matching for picture libraries. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(9), 947–963 (2001)

    Article  Google Scholar 

  22. Wu, L., Faloutsos, C., Sycara, K., Payne, T.R.: FALCON: feedback adaptive loop for content-based retrieval. In: Proceedings of the 26th VLDB Conference, pp. 297–306 (2000)

    Google Scholar 

  23. Zhou, X.S., Huang, T.S.: Edge-based structural features for content-based image retrieval. Pattern Recognition Letters 22(5), 457–468 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, D., Hua, K.A., Vu, K., Yu, N. (2006). Fast Query Point Movement Techniques with Relevance Feedback for Content-Based Image Retrieval. In: Ioannidis, Y., et al. Advances in Database Technology - EDBT 2006. EDBT 2006. Lecture Notes in Computer Science, vol 3896. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11687238_42

Download citation

  • DOI: https://doi.org/10.1007/11687238_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-32960-2

  • Online ISBN: 978-3-540-32961-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics