[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Two Logical Hierarchies of Optimization Problems over the Real Numbers

  • Conference paper
Mathematical Foundations of Computer Science 2005 (MFCS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3618))

  • 1398 Accesses

Abstract

We introduce and study certain classes of optimization problems over the real numbers. The classes are defined by logical means, relying on metafinite model theory for so called ℝ-structures (see [9],[8]). More precisely, based on a real analogue of Fagin’s theorem [9] we deal with two classes MAX-NP and MIN-NP of maximization and minimization problems, respectively, and figure out their intrinsic logical structure. It is proven that MAX-NP decomposes into four natural subclasses, whereas MIN-NP decomposes into two. This gives a real number analogue of a result by Kolaitis and Thakur [10] in the Turing model. Our proofs mainly use techniques from [13]. Finally, approximation issues are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  2. Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  3. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation. Springer, Heidelberg (1998)

    Google Scholar 

  4. Bürgisser, P., Cucker, F.: Counting Complexity Classes for Numeric Computations II: Algebraic and Semialgebraic Sets. In: Proc. 36th Symposium on Theory of Computing STOC, pp. 475–485 (2004)

    Google Scholar 

  5. Chadzelek, T., Hotz, G.: Analytic machines. Theoretical Computer Science 219, 151–167 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cucker, F., Meer, K.: Logics which capture complexity classes over the reals. Journal of Symbolic Logic 64(1), 363–390 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Ebbinghaus, H.D., Flum, J.: Finite Model Theory. Springer, Heidelberg (1995)

    MATH  Google Scholar 

  8. Grädel, E., Gurevich, Y.: Metafinite Model Theory. In: Leivant, D. (ed.) Logic and computational complexity, pp. 313–366. Springer, Heidelberg (1996)

    Google Scholar 

  9. Grädel, E., Meer, K.: Descriptive complexity theory over the real numbers. Lectures in Applied Mathematics 32, 381–403 (1996)

    Google Scholar 

  10. Kolaitis, P.G., Thakur, M.N.: Logical definability of NP optimization problems. Information and Computation 115(2), 321–353 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  11. Immerman, N.: Descriptive Complexity. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  12. Malmström, A.: Optimization problems with approximation schemes. In: van Dalen, D., Bezem, M. (eds.) CSL 1996. LNCS, vol. 1258, pp. 316–333. Springer, Heidelberg (1997)

    Google Scholar 

  13. Meer, K.: Counting problems over the reals. Theoretical Computer Science 242, 41–58 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Meer, K.: On some relations between approximation problems and pCPs over the real numbers. In: Cooper, S.B., Löwe, B., Torenvliet, L. (eds.) CiE 2005. LNCS, vol. 3526, pp. 322–331. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  15. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation and complexity classes. Journal of Computer and System Sciences 43, 425–440 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  16. Renegar, J.: On the computational Complexity and Geometry of the first-order Theory of the Reals, I - III. J. of Symbolic Computation 13, 255–352 (1992)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hansen, U.F., Meer, K. (2005). Two Logical Hierarchies of Optimization Problems over the Real Numbers. In: Jȩdrzejowicz, J., Szepietowski, A. (eds) Mathematical Foundations of Computer Science 2005. MFCS 2005. Lecture Notes in Computer Science, vol 3618. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11549345_40

Download citation

  • DOI: https://doi.org/10.1007/11549345_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28702-5

  • Online ISBN: 978-3-540-31867-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics